• Title/Summary/Keyword: High mobility electron transistor

Search Result 165, Processing Time 0.024 seconds

Design of an High Efficiency Pallet Power Amplifier Module (S-대역 고효율 Pallet 전력증폭기 모듈 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Choi, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1071-1079
    • /
    • 2010
  • This paper describes the design and fabrication of a high-efficiency GaN HEMT(Gallium Nitride High-electron Mobility Transistor) Pallet power amplifier module for S-band phased array radar applications. Pallet amplifier module has a series 2-cascaded power amplifier and the final amplification-stage consists of balanced GaN HEMT transistor. In order to achieve high efficiency characteristic of pallet power amplifier module, all amplifiers are designed to the switching-mode amplifier. We performed with various PRF(Pulse Repetition Frequency) of 1, 10, 100 and 1000Hz at a fixed pulse width of $100{\mu}s$. In the experimental results, the output power, gain, and drain efficiency(${\eta}_{total}$) of the Pallet power amplifier module are 300W, 33dB, and 51% at saturated output power of 2.9GHz, respectively.

Influence of in-situ remote plasma treatment on characteristics of amorphous indium gallium zinc oxide thin film-based transistors

  • Gang, Tae-Seong;Gu, Ja-Hyeon;Hong, Jin-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.257-257
    • /
    • 2011
  • The amorphous indium-gallium-zinc-oxide (a-IGZO) materials for use in high performance display research fields are strongly investigated due to its good performance, such as high mobility and better transparency. However, the stability of a-IGZO materials is increasingly becoming one of critical issues due to the sub-gap electron trap sites induced by rough interfaces during deposition processing. It is well-known that the threshold voltage shift is related to interface roughness and oxygen vacancy formed by breaking weak chemical bonds. Here, we report the better properties of transparent oxide transistors by reducing the threshold voltage shift with an external rf plasma supported magnetron sputtering system. Mainly, our sputtering method causes the surface of sample to be sleek, so that it prevents the formation of various defects, such as shallow electron trap sites in the interface. External rf power was applied from 0 to 50W during RF sputtering process to enhance the stability of our oxide transistor without having a large voltage shift. To observe the effects of external rf-plasma source on the properties of our devices, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) are carried out to observe surface roughness and morphology of sputtered thin film. In addition, typical electrical properties, such as I-V characteristics are analyzed.

  • PDF

RTA Effect on Transport Characteristics in Al0.25Ga0.75As/In0.2Ga0.8As pHEMT Epitaxial Structures Grown by Molecular Beam Epitaxy (MBE로 성장된 Al0.25Ga0.75As/In0.2Ga0.8As pHEMT 에피구조의 RTA에 따른 전도 특성)

  • Kim, Kyung-Hyun;Hong, Sung-Ui;Paek, Moon-Cheol;Cho, Kyung-Ik;Choi, Sang-Sik;Yang, Jeon-Wook;Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.605-610
    • /
    • 2006
  • We have investigated $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ structures for pseudomorphic high electron mobility transistor(pHEMT), which were grown by molecular beam epitaxy(MBE) and consequently annealed by rapid thermal anneal(RTA), using Hall measurement, photoluminescence, and transmission electron microscopy (TEM). According to intensity and full-width at half maximum maintained stable at the same energy level, the quantized energy level in $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ quantum wells was independent of the RTA conditions. However, the Hall mobility was decreased from $6,326cm^2/V.s\;to\;2,790cm^2/V.s\;and\;2,078cm^2/V.s$ after heat treatment respectively at $500^{\circ}C\;and\;600^{\circ}C$. The heat treatment which is indispensable during the fabrication procedure would cause catastrophic degradation in electrical transport properties. TEM observation revealed atomically non-uniform interfaces, but no dislocations were generated or propagated. From theoretical consideration about the mobility changes owing to inter-diffusion, the degraded mobility could be directly correlated to the interface scattering as long as samples were annealed below $600^{\circ}C$ lot 1 min.

A fabrication and characterization of asymmetric 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT device using electron beam lithography (전자선 묘화 장치를 이용한 비대칭적인 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-게이트 PHEMT 공정 및 특성에 관한 연구)

  • 임병옥;김성찬;김혜성;신동훈;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.189-192
    • /
    • 2001
  • We have studied fabrication processes that form asymmetric $\Gamma$-gate with a 0.1${\mu}{\textrm}{m}$ gate length in MMIC's(Monolithic Microwave Integrated Circuits). Asymmetric $\Gamma$-gate was fabricated using mixture of PMMA and MCB. Thus pseudomorphic high electron mobility transistor (PHEMT's) with 0.1${\mu}{\textrm}{m}$ gate length was fabricated via several steps such as mesa isolation, metalization, recess, passivation. PHEMT's has the -1.75 V of pinch-off voltage (Vp), 63 mA of drain saturation current(Idss and 363.6 mS/mm of maximum transconductance (Gm) in DC characteristics and current gain cut-off frequency of 106 GHz and maximum frequency of oscillation of 160 GHz in RF characteristics.

  • PDF

2DEG Calculation in InP HEMT (InP HEMT의 2DEG계산)

  • Hwang, K.C.;Ahn, H.K.;Han, D.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.316-318
    • /
    • 2003
  • 양자우물 구조를 사용한 HEMT(High Electron Mobility Transistor)는 고속 스위칭 소자와 초고주파 통신용 소자 및 센서에에 우수한 동작특성을 갖고 있다. 본 논문에서는 AlInAs/InP HEMT의 heterostructure를 파동방정식과 Poisson 방정식을 self-consistent 한 방법으로 해석하였다. 파동방정식으로 junction의 전자농도를 계산하고, Poisson 방정식을 해석하여 potential profile에 의한 전자 농도가 heterostructure에서 self-consistent가 되도록 연산하였다. 끝으로 AlInAs/InP 구조에서 positively ionized donor, valance band에서의 hole, conduction band의 free electron과 구조내의 2DEG를 AlGaAs/GaAs 및 AlGaAs/InGaAs/GaAs와 비교하였다.

  • PDF

Enhanced Performance of Solution-Processed n-channel Organic Thin Film Transistor with Electron-Donating Injection Layer

  • Kim, Sung-Hoon;Lee, Sun-Hee;Han, Seung-Hoon;Choi, Min-Hee;Jeong, Yong-Bin;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.64-66
    • /
    • 2009
  • We obtained high performance of n-type organic thin film transistors (OTFTs) using a solution process. N, N' bis-(octyl-)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-$8CN_2$) in ambient air. Low work function interlayer on source/drain is needed to enhance the electron injection to low LUMO level of n-type organic semiconductor. By using self-assembled monolayer (SAM) the field-effect mobility of 0.33 $cm^2$/Vs was achieved.

  • PDF

초고주파 고출력 Gallium Nitride 전자소자의 기술동향 및 발전방향

  • 오재응
    • Electrical & Electronic Materials
    • /
    • v.12 no.8
    • /
    • pp.10-17
    • /
    • 1999
  • 본 논문에서는 최근 초고주파영역에서 우수한 고출력 특성을 갖는 것으로 알려진 AlGaN-GaN high-electron mobility transistor(HEMT's)의 최근 기술동향과 함께 응용가능성 및 한계에 대하여 검토하였다. GaN는 약 3.4eV 정도의 큰 밴드갭을 갖는 까닭에 200V 이상의 높은 항복전압을 갖는다. 또한 AlGaN와 이종접합을 형성하는 경우 piezoelectric field에 의하여 1$\times$10\ulcornercm\ulcorner 이상의 높은 밀도의 2DEG(two-dimensional electron gas)의 형성이 가능하고, 상온 전자이동도가 1,200$\textrm{cm}^2$/V-s 이상으로서 초고주파 고출력 전자소자의 구현에 필요한 물성을 갖추고 있다. 현재 cutoff frequency fT가 60GHz이상, maximum frequency fmax가 150GHz 이상의 소자가 개발되었으며, 3W/cm 이상의 cw(continuous wave) 전력밀도가 보고된바 있다. 또한 열전도도가 큰 새로운 기판이 개발되고, heat dissipation을 개선하기 위한 새로운 소자구조가 개발됨에 따라 보다 높은 전력밀도를 갖는 단위소자 또는 MMIC(monolithic microwave integrated circuits)의 구현가능성이 높아지고 있다.

  • PDF

The Structural-Dependent Characteristics of Rashba Spin Transports in In0.5Ga0.5As/In0.5Al0.5As Heterojunctions

  • Choi, Hyon-Kwang;Hwang, Sook-Hyun;Jeon, Min-Hyon;Yamda, Syoji
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.140-143
    • /
    • 2011
  • The growth and characterization of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ narrow-gap inverted high electron mobility transistor structures, developed as a candidate material for spin-injection devices, are presented in this study. We have grown samples possessing surface $In_{0.5}Ga_{0.5}As$ channels of different thicknesses (30 nm and 60 nm) both with and without a thin 3 nm $In_{0.5}Ga_{0.5}As$ cap layer by using molecular beam epitaxy. We then investigated the in-plane transport properties as well as the Rashba spin-orbit coupling constant of the two-dimensional electron gas confined at the heterojunction interface.

Growth of AlN/GaN HEMT structure Using Indium-surfactant

  • Kim, Jeong-Gil;Won, Chul-Ho;Kim, Do-Kywn;Jo, Young-Woo;Lee, Jun-Hyeok;Kim, Yong-Tae;Cristoloveanu, Sorin;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.490-496
    • /
    • 2015
  • We have grown AlN/GaN heterostructure which is a promising candidate for mm-wave applications. For the growth of the high quality very thin AlN barrier, indium was introduced as a surfactant at the growth temperature varied from 750 to $1070^{\circ}C$, which results in improving electrical properties of two-dimensional electron gas (2DEG). The heterostructure with barrier thickness of 7 nm grown at of $800^{\circ}C$ exhibited best Hall measurement results; such as sheet resistance of $215{\Omega}/{\Box}$electron mobility of $1430cm^2/V{\cdot}s$, and two-dimensional electron gas (2DEG) density of $2.04{\times}10^{13}/cm^2$. The high electron mobility transistor (HEMT) was fabricated on the grown heterostructure. The device with gate length of $0.2{\mu}m$ exhibited excellent DC and RF performances; such as maximum drain current of 937 mA/mm, maximum transconductance of 269 mS/mm, current gain cut-off frequency of 40 GHz, and maximum oscillation frequency of 80 GHz.

High Output Power and High Fundamental Leakage Suppression Frequency Doubler MMIC for E-Band Transceiver

  • Chang, Dong-Pil;Yom, In-Bok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2014
  • An active frequency doubler monolithic microwave integrated circuit (MMIC) for E-band transceiver applications is presented in this letter. This MMIC has been fabricated in a commercial $0.1-{\mu}m$ GaAs pseudomorphic high electron mobility transistor (pHEMT) process on a 2-mil thick substrate wafer. The fabricated MMIC chip has been measured to have a high output power performance of over 13 dBm with a high fundamental leakage suppression of more than 38 dBc in the frequency range of 71 to 86 GHz under an input signal condition of 10 dBm. A microstrip coupled line is used at the output circuit of the doubler section to implement impedance matching and simultaneously enhance the fundamental leakage suppression. The fabricated chip is has a size of $2.5mm{\times}1.2mm$.