• Title/Summary/Keyword: High intensity light source

Search Result 132, Processing Time 0.024 seconds

Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system (인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

Studies on the modelling of controlled environment in leaf vegetable crops II. Effects of different light source on the growth (엽채류의 환경제어 모델연구 II. 인공광 조건에 따른 식물의 생육변화)

  • 박권우;신영주;이용범
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1992.12a
    • /
    • pp.23-24
    • /
    • 1992
  • 식물공장에서 식물생산시 어떤 종류의 인공광을 사용하는가는 중요하다. 지금까지 연구는 HID(High Intensity Discharge)램프가 생육에 좋다고 하였으나, 실제로 너무 비싼 가격때문에 실제는 유럽의 농가에서도 이용되지 않고 있다. 본 연구는 자연광, 형광등, 백열등, 특수램프를 이용한 보광을 통해 광조건에 따른 백경채, 탑채, 상추, 쑥갓, 잎들께의 생육을 보고자 하였다. (중략)

  • PDF

Development of Optical System for 50W LED Security Lamp (50W급 LED 보안등용 조명광학계 개발)

  • Jung, Byoung-Jo;Jang, Sung-Whan;Roh, Yong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.296-305
    • /
    • 2012
  • In this paper, we develop about glare phenomenon at security light caused by light source's straight characteristic, maintaining uniformity ratio of illuminance as high, have long light distribution not by symmetry of rotation but a single axis. we develop second lens for security light that lack of light distribution phenomenon at each of security light can be solved. Our developed light system design satisfies lighting standard of security light's and shape of lens is single lens. so our lens optimizes designing or analysis by using lighting design and interpretation program. Making a Mock-up to do real measure, we have intensity of illumination and maintaining uniformity ratio of illuminance measurement data.

Design of an Ultrasmall Flexible-endoscope Illumination Optical System with Bat-wing Light Distribution

  • Ju-Yeop Yim;Chul-Woo Park;Mee-Suk Jung
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.755-760
    • /
    • 2023
  • In this paper, an illumination optical system that can mitigate the saturation phenomenon in the center of an image (caused by the typical flexible-endoscope illumination system using LEDs with Lambertian light distribution) is designed. When an LED with Lambertian light distribution is used as a light source, the amount of light in the center of the endoscopic illumination system is relatively high, compared to the periphery, causing saturation in the image. Since this phenomenon causes difficulty in detecting the patient's lesion, it is necessary to find a lighting-system design that can alleviate the saturation phenomenon. Therefore, in this paper a lighting system with bat-wing light distribution, which can lower the intensity at the center and secure the maximum amount of light at the maximum light distribution angle, is designed. In addition, to check the performance of the designed lighting system, a simulation of illumination and luminance is conducted for a system using a common aspherical lens with otherwise the same components. As a result, it is confirmed that the lighting system designed in this paper effectively reduces the luminance value at the center and secures more luminance values at the periphery than the familiar lighting system.

Basic Examination on 3D Measuring System Using Pulse-Compression

  • Fujimoto Ikumatsu;Ando Shigeru
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.60-66
    • /
    • 2005
  • In this paper, we propose the basic measurement method of a 3D digitizer using a CCD camera in detail. In the localization measurement with a CCD camera, the effect of the background light and the sensitivity consideration are always problems in realizing a high precision. In this research, a new measurement principle is proposed in which the pulse compression technique known in radar is used to eliminate the effect of background light even under a low intensity light source, and the coordinate values on the CCD camera image plane are determined accurately. From the quantitative evaluation of the S/N ratio improvement and the fundamental experiment, it is verified that a substantial improvement in the S/N ratio is realized for both the background noise and the pixel noise and that a resolution of less than the pixel is sufficiently possible.

High quality fast growth nano-crystalline Si film synthesized by UHF assisted HF-PECVD

  • Kim, Youn-J.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.306-306
    • /
    • 2010
  • A high density (> $10^{11}\;cm^{-3}$) and low electron temperature (< 2 eV) plasma is produced by using a conventional HF (13.56 MHz) plasma enhanced chemical vapor deposition (PECVD) with an additional ultra high frequency (UHF, 314 MHz) plasma source utilizing two parallel antenna assembly. It is applied for the high rate synthesis of high quality nanocrystalline silicon (nc-Si) films. A high deposition rate of 1.8 nm/s is achieved with a high crystallinity (< 70%), a low spin density (< $3{\times}10^{16}\;cm^{-3}$) and a high light soaking stability (< 1.5). Optical emission spectroscopy measurements reveal emission intensity of $Si^*$ and $SiH^*$, intensity ratio of $H{\alpha}/Si^*$ and $H{\alpha}/SiH^*$ which are closely related to film deposition rate and film crystallinity, respectively. A high flux of precursor and atomic hydrogen which are produced by an additional high excitation frequency is effective for the fast deposition of highly crystallized nc-Si films without additional defects.

  • PDF

Manufacturing of PAR Illumination Using COB Line Type LEDs (COB Line형 LED를 사용한 PAR 조명의 제작)

  • Youn, Gap-Suck;Yoo, Kyung-Sun;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.448-454
    • /
    • 2015
  • In this paper, the band structural design that is typically in a line was arranged in a ring shape, so as to configure the high power LED lighting in such a way as to form a concentrated light distribution angle of less than 15 degrees. The parabolic aluminized reflector PAR38 that facilitates design using area and the area of the optical system to the same extent, applied a multiple light-source condenser lens optical system for the control of integration. The LED used here implemented a single linear light source using ans LED module with ans LED, flip-chip chip-scale package. The optical system was designed based on the energy star standard.

Characteristics of Low-level Light Source for Animal Cell Proliferation (동물 세포 증식을 위한 저출력 광 소스의 특성)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Song, Chang-Hun;Mun, Seong-Pyo;Kim, Tae-Gon;Park, Yong-Pil;Kim, Dae-Young;Kim, Young-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • This paper performed the basic study for developing the Photodynamic Therapy Equipment for medical treatment. We developed the equipment palpating cell proliferation using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity, frequency and so on. Especially, to control the light irradiation frequency, FPGA was used, and to control the change of output value, TLC5941 was used. Control stage is divided into 30 levels by program. Consequently, the current value could be controlled by the change of level in Continue Wave(CW) and Pulse Width Modulation(PWM), and the output of a high brightness LED could be controlled stage by stage. And then, each experiment was performed to irradiation group and non-irradiation group for both Rat bone marrow and Rat tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of ELISA reader. As a result, the cell increase of Rat bone marrow and tissue cells was verified in irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

Changes in SPAD Chlorophyll Value of Chrysanthemum (Dendranthema grandiflora Tzvelev) by Photoperiod and Light Intensity (광주기와 광도에 따른 국화 잎의 SPAD 엽록소 함량의 변화)

  • Lee, Byung-Joo;Won, Mi-Kyoung;Lee, Dong-Hee;Shin, Dong-Gi
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.555-559
    • /
    • 2001
  • This research was conducted to estimate the chlorophyll contents of chrysanthemum leaves using SPAD-502 chlorophyll meter under different photoperiod and light intensity. Measurements were done at every third leaf intervals starting from the top of the stem to the bottom at harvest time. SPAD value was highest at 10 hours of photoperiods, followed by 13 and 16 hours of photoperiods. In particular, under short day condition, SPAD value was highest in the young leaves below the flower bud and decreased down the leaf profile. Under long day condition, SPAD value reached maximum at leaves between $15-27^{th}$ from the top and decreased to the minimum immediately below the flower bud (youngest leaf). These results may indicate that the younger leaves become strong source of supporting flowers in reproductive stage, while the younger leaves serve as sinks and older leaves support their development in vegetative stage. Changes of SPAD value at different levels of irradiance showed that highest SPAD value were observed at high irradiance and decreased with decreasing irradiance.

  • PDF

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • Yoo, Seoung-Chool
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF