• Title/Summary/Keyword: High impact strength

Search Result 680, Processing Time 0.026 seconds

The Change of Mechanical Properties on Weld Heat Input in 60kg/mm2 Quenched and Tempered High Strength Steel (60kg/mm2급 조질고장력강의 용접입열량에 따른 기계적 특성 변화)

  • Kim, O.S.;Park, K.C.;Chung, I.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 1994
  • For the purpose of studying the change of mechanical properties of weld parts, shielded metal are welding, one-pole and two-pole submerged arc welding were accomplished weldability on $60kg/mm^2$ quenched and tempered high strength steel. Charpy impact values of the weld metal in welded parts by SMAW and SAW were lower than those of the heat affected zone and increased in order of bond, coarsened, refined and carbon spheroidized regions in the heat affected zone. Grain size of prior austenite or M-A constituent did not significantly affect toughness of welded parts, but precipitated carbide films which forms at the grain boundaries or within matrix and volume fraction of pearilte were most important factor for toughness.

  • PDF

Strength Analysis of Luggage Intrusion into Recreational Vehicle Seat (RV 차량 시트의 적재물 침입 강도해석)

  • Bae Jinwoo;Kang Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.160-166
    • /
    • 2005
  • In recent, recreational vehicles, which efficiently provide wide inner space for various utilities, are highly preferred in automobile market. Though those vehicles enable to load much luggage in space behind the last seat, in case of frontal impact with high velocity the luggage strongly collides into the seat back and the passengers in. the last seat could be severely injured. Therefore, high strength against luggage intrusion is required for the last seat, and it is regulated by law of ECE R17. In this study, for a recreational vehicle under developing, an analysis technique for simulating seat crash in accordance with luggage intrusion test of ECE R17 was investigated. The results exhibited good correlation with the test ones.

A Study on the Quality Test of Grinding Disk Assembly for Crushing Material in Secondary Battery (이차전지 원료 해쇄용 Grinding Disc Assembly 품질 시험에 관한 연구)

  • Sang-Pil Han;Dong-Hyuk Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.42-46
    • /
    • 2023
  • Currently, fossil resources are depleting rapidly. We are looking for energy to replace fossil fuels. They are trying to use electricity to replace internal combustion locomotives. Secondary battery raw materials and chemical additives are pulverized by the high-speed rotation of the grinding disc of the Classifier Separator Mill. Grinding Disc Assembly requires characteristics to withstand abrasion, corrosion, high-speed rotational force and impact. Domestic and foreign grinding discs were analyzed through abrasion resistance, hardness, bending strength, and tensile adhesion strength tests.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

A Study for Evaluation of Hot Mixed Asphalt Mixtures with Tack-Coat Regarding High-Frequency Dynamic Resistance Performance and Bonding Property (택코트 첨가 가열아스팔트 혼합물의 고주파 동적저항 특성 및 접착성능 평가에 대한 연구)

  • Kim, Dowan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.35-47
    • /
    • 2015
  • PURPOSES : A tack coat has been utilized to increase the bond performance between the surface layer and base course (intermediate course) at various road pavement sites. This is similarly true in other nations. Based on this connection, the objective of the present study is to evaluate the properties of hot mix asphalt (HMA) mixtures with an RSC-4 or BD-Coat and determine the application rate of the tack coat. METHODS : The HMA specimens were manufactured using superpave gyratory compaction. The HMA mixtures were composed of a 5-cm thick surface layer and a 10-cm thick base course. An impact hammer resonance test (IHRT) and a static load shear test were conducted to evaluate the performance of the HMA mixtures with a tack coat. From these tests, the dynamic moduli related to the high-frequency resistance and interlayer shear strength (ISS) of HMA could be obtained. RESULTS : The results of the dynamic moduli of HMA are discussed based on the resonance frequency (RF). To check the accuracy of the IHRT, we conducted a coherence analysis. A direct shear test using the application of a static load test was carried out to evaluate the interlayer shear strength (ISS) of HMA. CONCLUSIONS : The maximum ISS was demonstrated at an RSC-4 application rate of 462 gsm, and the maximum dynamic modulus was demonstrated at an RSC-4 application rate of 306 gsm. By averaging the results of the ISS, the maximum ISS values were obtained when a BD-Coat application rate of 602 gsm was applied.

Analysis of Mechanical Property Changes of Polymer Eyeglass Frames by Thermal Impact (고분자 안경테의 온도에 의한 기계적 물성 변화 분석)

  • Seo, Hogeun;Yoon, Taeyang;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2014
  • Purpose: To analyze thermal effect on mechanical properties of domestic commercial polymer-based eyewear frames. Methods: In this study, materials of cellulose acetate, polyamide, epoxy, and polyetherimide were exposed to high or low temperature and were mounted on universal test machine (TO-100-IC) for tensile strength test. Elastic behavior, Young's modulus, maximum displacement, and fatigue were tested with various temperature ($-25^{\circ}C$, $25^{\circ}C$, $60^{\circ}C$). Results: As a result, at room temperature, displacements of materials were changed with increasing impact load. At low temperature ($-25^{\circ}C$), maximum displacements of all specimens were decreased but young's modulus were increased. However, at high temperature, maximum displacements of all specimens were increased but young's modulus were decreased. Conclusions: Degree of displacements due to fatigue behavior was increased following direction of PEI, epoxy, polyamide, acetate. We concluded that commercial polymers used in eyewear frames physical properties were changed differently to exposed temperature.

Effect of Carbon-based Nanofillers on the Toughening Behavior of Epoxy Resin

  • Lee, Gi-Bbeum;Kim, Haeran;Shin, Wonjae;Jeon, Jinseok;Park, In-Seok;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.179-186
    • /
    • 2021
  • Carbon-based nanofillers, including nanodiamond (ND) and carbon nanotubes (CNTs), have been employed in epoxy matrixes for improving the toughness, using the tow prepreg method, of epoxy compounds for high pressure tanks. The reinforcing performance was compared with those of commercially available toughening fillers, including carboxyl-terminated butadiene acrylonitrile (CTBN) and block copolymers, such as poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate) (BA-b-MMA). CTNB improved the mechanical performance at a relatively high filler loading of ~5 phr. Nanosized BA-b-MMA showed improved performance at a lower filler loading of ~2 phr. However, the mechanical properties deteriorated at a higher loading of ~5 phr because of the formation of larger aggregates. ND showed no significant improvement in mechanical properties because of aggregate formation. In contrast, surface-treated ND with epoxidized hydroxyl-terminated polybutadiene considerably improved the mechanical properties, notably the impact strength, because of more uniform dispersion of particles in the epoxy matrix. CNTs noticeably improved the flexural strength and impact strength at a filler loading of 0.5 phr. However, the improvements were lost with further addition of fillers because of CNT aggregation.

An Alternative Fiber Processing Method

  • Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.34-42
    • /
    • 2011
  • A fiber processing method, which might be an alternative for conventional refining process, was introduced. The method consists of repetitive, gentle, mechanical impacts on fibers, followed by fiber uncurling process. This method was very effective for OCC and BCTMP for increasing WRVs (water retention value) while keeping fiber lengths from shortening. For OCC and BCTMP, gentle mechanical impacts on fibers using Hobart mixer increased breaking lengths and tear strengths simultaneously at fast drainage level, and straightening fibers using kady mill increased those strength properties further. For SwBKP and HwBKP, only mechanical impacts using the Hobart mixer were effective on increasing tensile and tear strength at fast drainage, but there were no further increase by kady mill treatment. The strength increases of BCTMP by this alternative fiber processing method were exceptionally high. An extensive engineering development should be followed to actualize this fiber processing mechanism in an energy-effect way.

Recent Trends in Ferrous PM Materials in Japan

  • Takajo, Shigeaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.4-4
    • /
    • 1993
  • Ferrous powder metallurgy in Japan has developed in the last four decades, where every decade is featured by certain breakthroughs in materials. The progress in PM materials is closely related to newly developed powders. Low alloy steel powders for high strength PM components are grouped into three types: Ni and/or Mo containing completely alloyed powders, Ni containing partially alloyed powders, and Cr containing completely alloyed powders. Every type has its special characteristics. The tensile strength of PM materials is improved up to 2 GPa. The hardness is also increased to exceed 500 HV with normal hardening methods, and 700 HV with novel surface treatment techniques. The present maximum of fatigue strength is 550 MPa, and that of impact energy is 100 J. Novel PM materials with improved properties are applied to a variety of automobile and other components: power steering pumps, rocker anns, valve guides and inserts, bearings, torque sensors, etc. The future outlook for the ferrous PM is Quite positive, and the industry is expected to show renewed growth by applying many types of alloy steel powders and new ferrous PM materials.

  • PDF