• Title/Summary/Keyword: High frequency-plasma enhanced chemical vapor deposition

Search Result 28, Processing Time 0.033 seconds

A Study on High Frequency-Plasma Enhanced Chemical Vapor Deposition Silicon Nitride Films for Crystalline Silicon Solar Cells

  • Li, Zhen-Hua;Roh, Si-Cheol;Ryu, Dong-Yeol;Choi, Jeong-Ho;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.156-159
    • /
    • 2011
  • SiNx:H films have been widely used for anti-reflection coatings and passivation for crystalline silicon solar cells. In this study, SiNx:H films were deposited using high frequency (13.56 MHz) direct plasma enhanced chemical vapor deposition, and the optical and passivation properties were investigated. The radio frequency power, the spacing between the showerhead and wafer, the $NH_3/SiH_4$ ratio, the total gas flow, and the $N_2$ gas flow were changed over certain ranges for the film deposition. The thickness uniformity, the refractive index, and the minority carrier lifetime were then measured in order to study the properties of the film. The optimal deposition conditions for application to crystalline Si solar cells are determined from the results of this study.

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source

  • Choi, Min-Jun;Kwon, O Dae;Choi, Sang Dae;Baek, Ju-Yeoul;An, Kyoung-Joon;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.25 no.4
    • /
    • pp.73-76
    • /
    • 2016
  • Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.

Fundamental Study of CNTs Fabrication for Charge Storable Electrode using RF-PECVD System

  • Jung, Ki-Young;Kwon, Hyuk-Moon;Ahn, Jin-Woo;Lee, Dong-Hoon;Park, Won-Zoo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.8-13
    • /
    • 2009
  • Plasma enhanced chemical vapor deposition (PECVD) is commonly used for Carbon nanotubes (CNTs) fabrication, and the process can easily be applied to industrial production lines. In this works, we developed novel magnetized radio frequency PECVD system for one line process of CNTs fabrication for charge storable electrode application. The system incorporates aspects of physical and chemical vapor deposition using capacitive coupled RF plasma and magnetic confinement coils. Using this magnetized RF-PECVD system, we firstly deposited Fe layer (about 200[nm]) on Si substrate by sputter method at the temperature of 300[$^{\circ}$] and hence prepared CNTs on the Fe catalyst layer and investigated fundamental properties by scanning electron microscopy (SEM) and Raman spectroscopy (RS). High-density, aligned CNTs can be grown on Fe/Si substrates at the temperature of 600[$^{\circ}$] or less.

Optimization of remote plasma enhanced chemical vapor deposition oxide deposition process using orthogonal array table and properties (직교배열표를 쓴 remote-PECVD 산화막형성의 공정최적화 및 특성)

  • 김광호;김제덕;유병곤;구진근;김진근
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Optimum condition of remote plasma enhanced chemical vapor deposition using orthogonal array method was chosen. Characteristics of oxide films deposited by RPECVD with SiH$_{4}$ and N$_{2}$O gases were investigated. Etching rate of the optimized SiO$_{2}$ films in P-etchant was about 6[A/s] that was almost the same as that the high temperature thermal oxide. The films showed high dielectric breakdown field of more than 7[MV/cm] and a resistivity of 8*10$^{13}$ [.ohmcm] around at 7[MV/cm]. The interface trap density of SiO$_{2}$/Si interface around the midgap derived from the high frequency C-V curve was about 5*10$^{10}$ [/cm$^{2}$eV]. It was observed that the dielectric constant of the optimized SiO$_{2}$ film was 4.29.

  • PDF

High quality fast growth nano-crystalline Si film synthesized by UHF assisted HF-PECVD

  • Kim, Youn-J.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.306-306
    • /
    • 2010
  • A high density (> $10^{11}\;cm^{-3}$) and low electron temperature (< 2 eV) plasma is produced by using a conventional HF (13.56 MHz) plasma enhanced chemical vapor deposition (PECVD) with an additional ultra high frequency (UHF, 314 MHz) plasma source utilizing two parallel antenna assembly. It is applied for the high rate synthesis of high quality nanocrystalline silicon (nc-Si) films. A high deposition rate of 1.8 nm/s is achieved with a high crystallinity (< 70%), a low spin density (< $3{\times}10^{16}\;cm^{-3}$) and a high light soaking stability (< 1.5). Optical emission spectroscopy measurements reveal emission intensity of $Si^*$ and $SiH^*$, intensity ratio of $H{\alpha}/Si^*$ and $H{\alpha}/SiH^*$ which are closely related to film deposition rate and film crystallinity, respectively. A high flux of precursor and atomic hydrogen which are produced by an additional high excitation frequency is effective for the fast deposition of highly crystallized nc-Si films without additional defects.

  • PDF

A Novel Solid Phase Epitaxy Emitter for Silicon Solar Cells

  • Kim, Hyeon-Ho;Park, Seong-Eun;Kim, Yeong-Do;Ji, Gwang-Seon;An, Se-Won;Lee, Heon-Min;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.1-480.1
    • /
    • 2014
  • In this study, we suggest the new emitter formation applied solid phase epitaxy (SPE) growth process using rapid thermal process (RTP). Preferentially, we describe the SPE growth of intrinsic a-Si thin film through RTP heat treatment by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Phase transition of intrinsic a-Si thin films were taken place under $600^{\circ}C$ for 5 min annealing condition measured by spectroscopic ellipsometer (SE) applied to effective medium approximation (EMA). We confirmed the SPE growth using high resolution transmission electron microscope (HR-TEM) analysis. Similarly, phase transition of P doped a-Si thin films were arisen $700^{\circ}C$ for 1 min, however, crystallinity is lower than intrinsic a-Si thin films. It is referable to the interference of the dopant. Based on this, we fabricated 16.7% solar cell to apply emitter layer formed SPE growth of P doped a-Si thin films using RTP. We considered that is a relative short process time compare to make the phosphorus emitter such as diffusion using furnace. Also, it is causing process simplification that can be omitted phosphorus silicate glass (PSG) removal and edge isolation process.

  • PDF

The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD (RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성)

  • Lee Young-Ze;Cho Yong-Kyung;Shin Yun-Ha
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • Choe, Eun-Chang;Park, Yong-Seop;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF

Dual-frequency Capacitively Coupled Plasma-enhanced Chemical Vapor Deposition System for Solar Cell Manufacturing

  • Gwon, Hyeong-Cheol;Won, Im-Hui;Sin, Hyeon-Guk;Rehman, Aman-Ur;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.310-311
    • /
    • 2011
  • Dual-frequency (DF) capacitively coupled plasmas (CCP) are used to separately control the mean ion energy and flux at the electrodes [1]. This separate control in capacitively coupled radio frequency discharges is one of the most important issues for various applications of plasma processing. For instance, in the Plasma Enhanced Chemical Vapor Deposition processes such as used for solar cell manufacturing, this separate control is most relevant. It principally allows to increase the ion flux for high deposition rates, while the mean ion energy is kept constant at low values to prevent highly energetic ion bombardment of the substrate to avoid unwanted damage of the surface structure. DF CCP can be analyzed in a fashion similar to single-frequency (SF) driven with effective parameters [2]. It means that DF CCP can be converted into SF CCP with effective parameters such as effective frequency and effective current density. In this study, comparison of DF CCP and its converted effective SF CCP is carried out through particle-in-cell/Monte Carlo (PIC-MCC) simulations. The PIC-MCC simulation shows that DF CCP and its converted effective SF CCP have almost the same plasma characteristics. In DF CCP, the negative resistance arises from the competition of the effective current and the effective frequency [2]. As the high-frequency current increases, the square of the effective frequency increases more than the effective current does. As a result, the effective voltage decreases with the effective current and it leads to an increase of the ion flux and a decrease of the mean ion energy. Because of that, the negative resistance regime can be called the preferable regime for solar cell manufacturing. In this preferable regime, comparison of DF (13.56+100 or 200 MHz) CCP and SF (60 MHz) CCP with the same effective current density is carried out. At the lower effective current density (or at the lower plasma density), the mean ion energy of SF CCP is lower than that of DF CCP. At the higher effective current density (or at the higher plasma density), however, the mean ion energy is lower than that of SF CCP. In this case, using DF CCP is better than SF CCP for solar cell manufacturing processes.

  • PDF

Tribolgical Characteristics of DLC Film using Substrates with Varying Hardness

  • Park, Jae-Hong;Jang, Beom-Taek;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.31-35
    • /
    • 2008
  • DLC (Diamond Like Carbon) films have predominant tribological properties like a high hardness, low friction and high chemical resistance; therefore, DLC films are applied in a wide range of industrial fields. This paper evaluated the characteristics of DLC films deposited on bearing steel with different hardness by RF-PECVD (Radio Frequency - Plasma Enhanced Chemical Vapor Deposition) method. Si-interlayer was deposited on bearing steel to improve adhesion strength by RF-Sputtering method. The DLC film structures were analyzed with Raman spectra and Gaussian function. Adhesion strength of DLC films was measured with a scratch tester. Friction and wear test were carried out with a ball-on -disc type to investigate the tribological characteristics. Experimental results showed that DLC films deposited on bearing steel under same deposition condition have typical structure DLC films regardless of hardness of bearing steel. Adhesion strength of DLC film is increased with a hardness of bearing steel. Friction coefficient of DLC film showed lower at the high hardness of bearing steel.