• Title/Summary/Keyword: High frequency voltage signal

Search Result 331, Processing Time 0.022 seconds

Study on Integrated for Capacitive Pressure Sensor (용량성 압력센서의 집적화에 관한 연구)

  • 이윤희
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.1
    • /
    • pp.48-58
    • /
    • 1998
  • For the purpose of designing novel capacitance pressure sensor, several effects on sensitivity such as parasitic capacitance effects, temperature/thermal drift and leakage current have to be eleiminated. This paper proposed the experimental studies on frequency compensation method by electronic circuit technique, C-V converting method with switched capacitor and C-F converting method with schmitt trigger circuit. The third interface circuit by frequency compensation method is composed to eliminate the drift and leakage component by comparision sensing frequency with reference frequency. The signal transmission is realized by digital signal to minimize the influence of noise and high resolution is obtained by means of increasing the number of digital bits. In the fabricated high performance C-V interface, the offset voltage was not appeared, and in case of voltage source, 4.0V, feed back capacitance, 10㎊, the pressure, 0~10 ㎪, the sensitivity of C-V converter is 28 ㎷/㎪.V, the temperature drift characteristic, 0.051 %F.S./$^{\circ}C$ and C-F converter shows -6.6 Hz/pa, 0.078 %F.S./$^{\circ}C$ respectively, relatively good ones.

  • PDF

The Electric Field Dependence of the Resonance Characteristics and Piezoelectric Constant of the PZT-PMNS Ceramics (PZT-PMNS 세라믹의 공진특성 및 압전 정수의 전계의존성)

  • Oh, Jin-Heon;Lim, Kee-Joe;Kang, Seong-Hwa;Kim, Hyeon-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.179-180
    • /
    • 2008
  • In this paper, the variable tendency piezoelectric constant and resonance characteristics piezoelectric ceramics due to the electric field is studied. The practical application of piezoelectric ceramics is not only applied in field of small signal. For example, in case of an ultrasonic motor, $120{\sim}130Vrms$ of driving voltage is needed and that of an piezoelectric pump, $200{\sim}220Vrms$ of voltage is required. Therefore, to examine the characteristics of piezoelectric ceramics in large signal contributes to reducing the susceptibility to the multifarious application and securing the ease of the production of control circuit. These contributions may be connected to the expansion of industrial application. We fabricated disk-type piezoelectric ceramic samples by using conventional method and measured the resonance characteristics of these samples under from low to high voltage driving conditions. According to increasing the value of the input voltage, we measured the resonance frequency of the piezoelectric ceramic, and inquired into the cause of these phenomena.

  • PDF

A Switching Technique for Common Mode Voltage Reduction of PWM-Inverter Induction Motor Drive System Using TMS320F240 (TMS320F240을 이용한 PWM 인버터 유도전동기 구동 시스템의 전도노이즈 저감을 위한 스위칭 기법)

  • 박규현;김이훈;원충연;김규식;최세완;함년근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2003
  • High frequency common mode voltage produced by PWM inverter fed Induction motor is a major cause of conducted EMI, creation motor ground currents, bearing currents and other harmful products. The zero switching states of inverter control invoke large in comparison with the non-zero switching state of Inverter control. We proposed a common mode voltage reduction method based on sinusoidal PWM technique. PWM signal are generated by comparing respective sinusoidal reference signal with three triangular carrier wave displaced of 120$^{\circ}$. Simulation and experimenta1 result show that common mode voltages in the proposed PWM technique are reduced by approximate 66% more than conventional FWM technique.

Design of Next Generation Amplifiers Using Nanowire FETs

  • Hamedi-Hagh, Sotoudeh;Oh, Soo-Seok;Bindal, Ahmet;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.566-570
    • /
    • 2008
  • Vertical nanowire SGFETs(Surrounding Gate Field Effect Transistors) provide full gate control over the channel to eliminate short channel effects. This paper presents design and characterization of a differential pair amplifier using NMOS and PMOS SGFETs with a 10nm channel length and a 2nm channel radius. The amplifier dissipates $5{\mu}W$ power and provides 5THz bandwidth with a voltage gain of 16, a linear output voltage swing of 0.5V, and a distortion better than 3% from a 1.8V power supply and a 20aF capacitive load. The 2nd and 3rd order harmonic distortions of the amplifier are -40dBm and -52dBm, respectively, and the 3rd order intermodulation is -24dBm for a two-tone input signal with 10mV amplitude and 10GHz frequency spacing. All these parameters indicate that vertical nanowire surrounding gate transistors are promising candidates for the next generation high speed analog and VLSI technologies.

Partial Discharge Detection of High Voltage Switchgear Using a Ultra High Frequency Sensor

  • Shin, Jong-Yeol;Lee, Young-Sang;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.211-215
    • /
    • 2013
  • Partial discharge diagnosis techniques using ultra high frequencies do not affect load movement, because there is no interruption of power. Consequently, these techniques are popular among the prevention diagnosis methods. For the first time, this measurement technique has been applied to the GIS, and has been tested by applying an extra high voltage switchboard. This particular technique makes it easy to measure in the live state, and is not affected by the noise generated by analyzing the causes of faults ? thereby making risk analysis possible. It is reported that the analysis data and the evaluation of the risk level are improved, especially for poor location, and that the measurement of Ultra high frequency (UHF) partial discharge of the real live wire in industrial switchgear is spectacular. Partial discharge diagnosis techniques by using the Ultra High Frequency sensor have been recently highlighted, and it is verified by applying them to the GIS. This has become one of the new and various power equipment techniques. Diagnosis using a UHF sensor is easy to measure, and waveform analysis is already standardized, due to numerous past case experiments. This technique is currently active in research and development, and commercialization is becoming a reality. Another aspect of this technique is that it can determine the occurrences and types of partial discharge, by the application diagnosis for live wire of ultra high voltage switchgear. Measured data by using the UHF partial discharge techniques for ultra high voltage switchgear was obtained from 200 places in Gumi, Yeosu, Taiwan and China's semiconductor plants, and also the partial discharge signals at 15 other places were found. It was confirmed that the partial discharge signal was destroyed by improving the work of junction bolt tightening check, and the cable head reinforcement insulation at 8 places with a possibility for preventing the interruption of service. Also, it was confirmed that the UHF partial discharge measurement techniques are also a prevention diagnosis method in actual industrial sites. The measured field data and the usage of the research for risk assessment techniques of the live wire status of power equipment make a valuable database for future improvements.

Output characteristics of ac excited $CO_2$ laser as a adjusting a phase angle and frequency (위상각와 주파수 제어에 따른 상용주파 AC 여기 방식의 펄스형 $CO_2$ 레이저 전원장치 개발에 관한 연구)

  • Chung, Hyun-Ju;Kim, Do-Wan;Lee, Dong-Hoon;Kim, Joong-Mann;Kim, Mee-Je;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2098-2100
    • /
    • 2000
  • We propose pulsed $CO_2$ laser below 30W by the AC(60Hz) switching control of leakage transformer primary which has some advantage of cost and size compared to a typical pulsed power supply. Pulse repetition rate is adjusted from 5Hz to 60Hz to control laser output. In this laser, a low voltage open loop control for high voltage discharge circuit is employed to avoid the HV sampling or switching and high voltage leakage transformer is used to convert rectified low voltage pulse to high voltage one. A ZCS(Zero Cross Switch) circuit and a PIC one-chip microprocessor are used to control gate signal of SCR precisely. The pulse repetition rate is limited by 60Hz due to the frequency of AC line and a high leakage inductance. The maximum laser output was obtained about 23W at pulse repetition rate of 60Hz, total gas mixture of $CO_{2}/N_{2}$/He = 1/9/15, SCR gate trigger angle 90$^{\circ}$, and total pressure of 18Torr.

  • PDF

Compensation of the Secondary Voltage of a Coupling Capacitor Voltage Transformer (CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Lee, Ji-Hoon;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.909-914
    • /
    • 2008
  • A coupling capacitor voltage transformer(CCVT) is used in an extra or ultra high voltage system to obtain the standard low voltage signal for protection. To avoid the phase angle error between the primary and secondary voltages, a tuning reactor is connected between a capacitor and a voltage transformer. The inductance of the reactor is designed based on the power system frequency. If a fault occurs on the power system, the secondary voltage of the CCVT contains some errors due to a dc offset component and harmonic components resulting from the fault. The errors become severe in the case of a close-in fault. This paper proposes an algorithm for compensating the secondary voltage of a CCVT in the time-domain. From the measured secondary voltage of the CCVT, the secondary and primary currents are obtained; then the voltage across the capacitor and the inductor is calculated and then added to the measured secondary voltage to obtain the correct primary voltage. Test results indicate that the proposed algorithm can compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle, and the burden of the CCVT.

A Single-Bit 3rd-Order Feedforward Delta Sigma Modulator Using Class-C Inverters for Low Power Audio Applications (저전력 오디오 응용을 위한 Class-C 인버터 사용 단일 비트 3차 피드포워드 델타 시그마 모듈레이터)

  • Hwang, Jun-Sub;Cheon, Jimin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.335-342
    • /
    • 2022
  • In this paper, a single-bit 3rd-order feedforward delta sigma modulator is proposed for audio applications. The proposed modulator is based on a class-C inverter for low voltage and power applications. For the high-precision requirement, the class-C inverter with regulated cascode structure increases its DC gain and acts as a low-voltage subthreshold amplifier. The proposed Class-C inverter-based modulator is designed and simulated in 180-nm CMOS process. With no performance loss and a low supply voltage compatibility, the proposed class-C inverter-based switched-capacitor modulator achieves high power efficiency. This design achieves an signal-to-noise-and-distortion ratio (SNDR) of 93.9 dB, an signal-to-noise ratio (SNR) of 108 dB, an spurious-free dynamic range (SFDR) of 102 dB, and a dynamic range (DR) of 102 dB at a signal bandwidth of 20 kHz and a sampling frequency of 4 MHz, while only using 280 μW of power consumption from a 0.8-V power supply.

Implementation of Multiple Frequency Bioelectrical Impedance Analysis System for Body Composition Analysis (신체 성분 분석을 위한 다 주파수 생체전기 임피던스 분석 시스템 구현)

  • Kim, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5403-5408
    • /
    • 2012
  • In this paper, we introduce the multiple frequency bio-electrical impedance analysis method for body composition analysis. And then we implement the multiple frequency bio-electrical impedance analysis system. Overall system consists of: multiple frequency alternating current signal generator contained alternating current signal, phase signal detector, voltage signal detector, micro controller, in-out device(key-pad LCD), conductivity electrodes, system power. We explain the architecture of the system and required theory to implement the system. In order to investigate the clinical significance of the body composition data, compare to the data measured by the expert body composition analyzer which provide high reproduction and precision. Finally, experimental results which are the correlation between the measured data show the very high reproduction performance of the body composition analysis in the proposed system.

The Property Analysis of Ceramic Metal-Halide Lamp Considering Acoustic Resonance Phenomenon and Design of Inverter by the PSpice Simulation (음향 공명 현상을 고려한 세라믹 메탈핼라이드의 특성 분석과 PSpice 시뮬레이션을 통한 인버터 설계)

  • Jang, Hyeok-Jin;Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1989-1994
    • /
    • 2009
  • This study purposes are improvement of system (lamp & ballast) efficacy with and optical characteristics through the developed ceramic arc tube. The designed electronic ballast is substituted for conventional magnetic ballast. These electric signal and optical, thermal characteristics through the improving efficacy of lighting system compared with conventional magnetic ballast. properties of lamp by driving method is researching in ballast. Particularly, electronic ballasts, which improved against weakness of Magnetic Ballast, are researching and applying to control of ceramic metal-halide lamp. but One major limitation is the acoustic resonance problem in CMH lamps at high-frequency operation. In order to avoid acoustic resonance, driving frequency decided 21[kHz]. Before discharge in this paper. The PSpice simulation result obtained sufficient voltage gain and the ignition voltage obtained over 3[kV] at 75[kHz]. After discharge, driving voltage obtained approximately 90[Vrms] at 21[kHz].