• 제목/요약/키워드: High frequency dielectric properties

검색결과 217건 처리시간 0.027초

Dielectric Properties of Orthorhombic Dysprosium Manganites

  • Wang, Wei Tian
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.753-756
    • /
    • 2019
  • Orthorhombic dysprosium manganite DyMnO3 with single phase is synthesized using solid-state reaction technique and the crystal structure and dielectric properties as functions of temperature and frequency are investigated. Thermally activated dielectric relaxations are shown in the temperature dependence of the complex permittivity, and the respective peaks are found to be shifted to higher temperatures as the measuring frequency increases. In Arrhenius plots, activation energies of 0.32 and 0.24 eV for the high- and low-temperature relaxations are observed, respectively. Analysis of the relationship between the real and imaginary parts of the permittivity and the frequencies allows us to explain the dielectric behavior of DyMnO3 ceramics by the universal dielectric response model. A separation of the intrinsic grain and grain boundary properties is achieved using an equivalent circuit model. The dielectric responses of this circuit are discerned by impedance spectroscopy study. The determined grain and grain boundary effects in the orthorhombic DyMnO3 ceramics are responsible for the observed high- and low-temperature relaxations in the dielectric properties.

진공증착법으로 제조된 $\beta$-PVDF 박막의 유전 특성에 미치는 이온의 영향 (The Effect of Ion Contribution to the Dielectric Properties of $\beta$-PVDF Thin Film Fabricated by Vapor Deposition Method)

  • 박수홍;김종택;이덕출
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1007-1013
    • /
    • 1998
  • In this paper, the dielectric properties of fabricated Polyvinylidene fluoride(PVDF, $PVF_2$) thin film with substrate temperature from 30 to at vapor deposition. The dielectric properties of PVDF thin film had been studied in the frequency range from 10Hz to 4MHz at measuring temperature between 20 and $100^{/circ}C$. The anomalous increasing in dielectric constant and dielectric loss at low frequencies and high temperature was described for PVDF thin film containing ion impurities. In particularly, ion mobility of fabricated PVDF thin film at substrate temperature at $30^{/circ}C$ decrease from $2\times10^{-5}\;to\;3.07$\times10^{-7}cm^2/V.s$ On the other hand, ion density increase abruptly from 1.49\times$$10^{13}$ to $1.5\times$10^{16}$cm^{-3}$ In spite of decreasing of ion mobility, dielectric constants and dielectric loss for PVDF thin film increase rapidly with decreasing frequency and high temperature. It was concluded that the dielectric constants and dielectric loss was related to ion density than to ion mobility at low frequency and high temperatures.

  • PDF

유리 섬유 강화 복합재료의 유전 특성에 관한 연구 (A Study on the Dielectric Properties of Glass Fiber-Reinforced Plastic Composites)

  • 이백수;황명환;김진식;조기선;육재호;이덕출
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1615-1617
    • /
    • 1996
  • In this study, epoxidized bisphenolic resins laminated with glass fiber mat(GFRP) are ivestigated on surface, bulk aspect and dielectric constant(${\varepsilon}'$ and ${\varepsilon}''$) vs. frequency characteristics with temperature. The investigation shows the different characteristics accordig to the attachments of fiber surface, filler content, matrix properties, and the others. Especially, dielectric properties of this sample are highly increased above $100^{\circ}C$ and decreased with the rise of frequency. There is a resonance at the high frequency region ($1MHz{\sim}10MHz$). So, dielectric properties show the shift with frequency and temperature. Dielectric properties of EGL 10 are higher than those of EGL 40 with the frequency. Generally, dielectric properties of EGL 10 are more unstable than those of EGL 40 on the shift of frequency and temperature.

  • PDF

$CaF_2$가 Filler로 첨가된 유리복합체의 고주파 유전특성 (High Frequency Dielectric Properties of $CaF_2$ filled Glass-Composites)

  • 김선영;이경호;김성원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.277-281
    • /
    • 2003
  • Effects of $CaF_2$ addition as a filler on the high frequency dielectric properties and sintering of CaO-$Al_2O_3-SiO_2-B_2O_3$(CASB) and ZnO-MgO-$B_2O_3-SiO_2$(ZMBS) glass composites were investigated. The optimal glass composition in the CASB system was 33.0CaO-$17.0Al_2O_3-35.0SiO_2-15.0B_O_3$(in wt%). The corresponding dielectric properties were k=8.1 and $Q{\times}fo$=1,200GHz. The sintering temperature was $800{\mu}m$. In case of 2MBS system, 25.0ZnO-25.0MgO-20.0$B_2O_3-30.0SiO_2$(in wt%) glass showed k=6.8 and $Q{\times}fo$=5,200GHz when it was sintered at $750^{\circ}C$. The maximum amount of $CaF_2$ in the CASB and 2MBS glass system without any detrimental effect on the sintering was 25.0 v/o and 15.0 v/o, respectively. The addition of $CaF_2$ in the glass systems improved the high frequency dielectric properties. In case of CASB+$CaF_2$ composite, k was 7.1 and $Q{\times}fo$ was 2,300GHz. And in case of 2MBS+$CaF_2$ composite, k was 5.9 and $Q{\times}fo$ was 8,100GHz. $CaF_2$ addition also reduced sintering temperature. Effects of $CaF_2$ on the dielectric and sintering properties was analyzed in terms of viscosity and crystallization behavior changes due to the interaction between $CaF_2$ and the glass systems.

  • PDF

전선용 실리콘 고무의 유전특성 (The Dielectric Properties of the Wire for Silicon Rubber)

  • 이성일;박승호
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.355-368
    • /
    • 2012
  • This paper, the hardness of the silicone rubber wire for 50, 60 degrees, 70 degrees High Temperature Vulcanizing (HTV) method using specimens were fabricated. In this paper, in order to investigate the dielectric properties of silicone rubber for wire specimens, the temperature range of $30^{\circ}C{\sim}170^{\circ}C$, the frequency range from 100Hz~4.5MHz report surveyed about the frequency and temperature dependent properties.

  • PDF

에폭시 복합체의 주파수 변화에 따른 유전특성 (Dielectric Properties of Epoxy Composites with Varying Frequency)

  • 이호식
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.676-682
    • /
    • 2018
  • 주파수 변화에 따른 에폭시 복합체의 전기적 특성을 알아보기 위하여 온도 범위 $20[^{\circ}C]$, $100[^{\circ}C]$, $140[^{\circ}C]$, 주파수 범위 30[Hz]~3[MHz] 사에서 유전율 및 유전손실을 측정하였다. 저주파 영역에서 유전분산과 유전 손실이 나타나고 있음을 확인하였다. 또한 고온 영역에서는 충진제의 영향으로 유전율이 감소하는 것을 확인하였다.

Dielectric and Electrical Properties of Ce,Mn:SBN

  • Kang, Bong-Hoon;Paek, Young-Sop;Rhee, Bum-Ku;Lim, Ki-Soo;Joo, Gi-Tae
    • 한국세라믹학회지
    • /
    • 제40권7호
    • /
    • pp.615-619
    • /
    • 2003
  • Temperature and frequency dependence of dielectric and electrical properties was investigated in cerium and manganese doped Sr$\_$0.6/Ba$\_$0.4/Nb$_2$O$\_$6/(60SBN) ceramic system. Structural deformation of 60SBN by dopants did not appeared. 1350$^{\circ}C$-10 h sintered specimen had higher densification than 1250$^{\circ}C$-10 h sintered one, to which dielectric properties are related. That the feature of dielectric maxima peaks was typical Diffusive Phase Transition (DPT), it was explained by "random-field Ising model". Even though 60SBN has large dielectric loss at high frequency above 100 ㎑, it is desirable for optical applications because of low dielectric loss at low frequency. From Arrhenius plot of temperature, the activation energy was calculated to 0.45-0.49 eV.

Microwave Dielectric Properties of Ti-Te system Ceramics for Triplexer Filter

  • Choi, Eui-Sun;Lee, Moon-Woo;Lee, Sang-Hyun;Kang, Gu-Hong;Kang, Gap-Sul;Lee, Young-Hie
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.263-269
    • /
    • 2011
  • In this study, the compositions for the microwave dielectric materials were investigated to obtain the improved dielectric properties, the high temperature stability, and the sintering temperature of less than $900^{\circ}C$, which was necessary for cofiring with the internal conductor of silver. In addition, the dielectric sheets were prepared by the tape casting technique, after which the sheets were laminated and sintered. In this process, the optimum ratio of powder and binder, laminating pressure, temperature, and possibility for cofiring with the internal conductor were studied. Finally, multilayer chip treplexer filter for the 800-2,000 MHz range were fabricated, and the frequency characteristics of the triplexer filter were investigated. When the $0.6TiTe_3O_8-0.4MgTiO_3+3wt%SnO+7wt%H_3BO_3$ ceramics were sintered at $820^{\circ}C$ for 0.3 hours, the microwave dielectric properties of the dielectric constant of 29.91, quality factor of 33,000 GHz, and temperature coefficient of resonant frequency of -2.76 ppm/$^{\circ}C$ were obtained. Using the Advanced Design System (ADS) and High Frequency Structure Simulator (HFSS), the multilayer chip triplexer filter acting at the range of 800-2,000 MHz were simulated and manufactured. The manufactured triplexer filter had the excellent frequency properties in the CDAM800, GPS and PCS frequency regions, respectively.

Numerical Method for Computing the Resonant Frequencies and Q-factor in Microwave Dielectric Resonator

  • Kim, Nam-young;Yoo, Hojoon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.245-248
    • /
    • 1997
  • The dielectric resonators(DRs) with dielectric properties are widely used in microwave integrated circuit(MICs) and monolithic microwave integrated circuits(MMICS). The variational method as numerical simulation scheme would be applied to calculate the resonant frequencies(fr) and Q-factors of microwave dielectric resonators. The dielectric resonator with a cylindrical “puck” structure of high dielectric material is modeled in this simulation. The parameters, such as the diameter, the height, and the dielectric constant of dielectric resonator, would determine the resonant frequency and the Q-factor. The relationship between these parameters would effect each other to evaluate the approximate resonant frequency. This simulation method by the variational formula is very effective to calculate fr, and Q-factor. in high frequency microwave dielectric resonator The error rate of the simulation results and the measured results would be considered to design the microwave dielectric resonators.

  • PDF

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF