Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.12.753

Dielectric Properties of Orthorhombic Dysprosium Manganites  

Wang, Wei Tian (Institute of Opto-Electronic Information Science and Technology, Yantai University)
Publication Information
Korean Journal of Materials Research / v.29, no.12, 2019 , pp. 753-756 More about this Journal
Abstract
Orthorhombic dysprosium manganite DyMnO3 with single phase is synthesized using solid-state reaction technique and the crystal structure and dielectric properties as functions of temperature and frequency are investigated. Thermally activated dielectric relaxations are shown in the temperature dependence of the complex permittivity, and the respective peaks are found to be shifted to higher temperatures as the measuring frequency increases. In Arrhenius plots, activation energies of 0.32 and 0.24 eV for the high- and low-temperature relaxations are observed, respectively. Analysis of the relationship between the real and imaginary parts of the permittivity and the frequencies allows us to explain the dielectric behavior of DyMnO3 ceramics by the universal dielectric response model. A separation of the intrinsic grain and grain boundary properties is achieved using an equivalent circuit model. The dielectric responses of this circuit are discerned by impedance spectroscopy study. The determined grain and grain boundary effects in the orthorhombic DyMnO3 ceramics are responsible for the observed high- and low-temperature relaxations in the dielectric properties.
Keywords
ceramics; dielectric properties; impedance analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer and M. Fiebig, Nature, 430, 541 (2004).   DOI
2 N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha and S. W. Cheong, Nature, 429, 392 (2004).   DOI
3 S. Harikrishnan, S. Rossler, C. M. N. Kumar, H. L. Bhat, U. K. Rossler, S. Wirth, F. Steglich and S. Elizabeth, J. Phys.: Condens. Matter, 21, 096002 (2009).   DOI
4 S. Jandl, S. Mansouri, A. A. Mukhin, V. YuIvanov, A. Balbashov, M. M. Gospodino, V. Nekvasil and M.Orlita, J. Magn. Magn. Mater., 323, 1104 (2011).   DOI
5 V. Yu. Ivanov, A. A. Mukhin, A. S. Prokhorov, A. M. Balbashov and L. D. Iskhakova, Phys. Solid State, 48, 1726 (2006).   DOI
6 K. Yadagiri, R. Nithya, N. Shukla and A. T. Satya, J. Alloys Compd., 695, 2959 (2017).   DOI
7 Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, O. Bidault and M. Maglionea, J. Appl. Phys., 100, 114111 (2006).   DOI
8 C. C. Wang, Y. M. Cui and L. W. Zhang, Appl. Phys. Lett., 90, 012904 (2007).   DOI
9 A. K. Jonscher, Dielectric Relaxation in Solids, 1st ed., p.103, Chelsea Dielectrics Press, London (1983).
10 W. Wang, B. Xu, P. Gao, W. Zhang and Y. Sun, Solid State Commun., 177, 7 (2014).   DOI
11 A. K. Jonscher, Nature, 267, 673 (1977).   DOI
12 D. C. Sinclair, A. R. West, J. Mater. Sci., 29, 6061 (1994).   DOI
13 D. C. Sinclair, A. R. West, J. Appl. Phys., 66, 3850 (1989).   DOI
14 N. P. Kumar and P. V. Reddy, Mater. Lett., 122, 292 (2014).   DOI