• Title/Summary/Keyword: High dividing ratio

Search Result 74, Processing Time 0.018 seconds

Measurement Range Extension of AC High Voltage using two 200 kV Capacitive Dividers (200 kV 용량형 분압기 2대를 이용한 교류 고전압 측정범위 확장)

  • Jung, Jae-Kap;Lee, Sang-Hwa;Kang, Jeon-Hong;Kim, Myung-Soo;Kim, Yoon-Hyoung;Han, Sang-Gil;Jeong, Jin-Hye;Han, Sang-Ok;Joung, Jong-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The output voltage value of AC high voltage source has been usually obtained by multiplying low voltage value measured at both terminals of low voltage resistor by the dividing ratio of the high voltage capacitive divider. From the dividing ratio determined of each 200 kV capacitive divider, we have developed step-up method for measuring the output voltage up to 400 kV using two same type of 200 kV capacitive dividers connected in series. The theoretical dividing ratio of 400 kV capacitive dividers connected in series coincides with that of manufacturer's certification within measurement uncertainty. Thus, this developed step-up method makes it possible to extend the range of output voltage from 200 kV to 400 kV. Furthermore, The dividing ratio of divider under test obtained using this step-up method is consistent with that obtained using one 200 kV high voltage divider within corresponding uncertainties.

Fabrication and Evaluation of AC 400 kV High Voltage Divider using Electric Field Sensor (전기장 센서를 이용한 교류 400 kV 고전압 분압기의 제작 및 평가)

  • Lee, Sang-Hwa;Han, Sang-Gil;Jung, Jae-Kap;Kang, Jeon-Hong;Kim, Yoon-Hyoung;Jeong, Jin-Hye;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.265-269
    • /
    • 2008
  • Output voltage value of AC high voltage source has usually been obtained by measuring the low arm voltage of high voltage divider or the secondary voltage of high voltage transformer. In this study, we have fabricated the AC 400 kV high voltage divider using high voltage electrode and electric field measurement sensor. The dividing ratio of the fabricated 400 kV high voltage divider was evaluated using reference 400 kV capacitive divider. The dividing ratio of 400 kV high voltage divider is found to be 12,322 and has the good linearity within 0.63 % against AC high voltage up to 400 kV. Therefore, the developed 400 kV high voltage divider could evaluate 400 kV high voltage supply and voltage divider used in industry.

Unequal Power Divider using Parallel Connection Transmission Line (병렬 연결된 전송선로를 이용한 비대칭 전력 분배기)

  • Kwon, Sang-Keun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.202-207
    • /
    • 2013
  • In this paper, a high dividing ratio unequal power divider using parallel connection transmission line is presented. Because a very low impedance transmission line can't implement a microstrip technology, this can fabricate a parallel connection transmission line with high impedance. When we design a high dividing ratio divider, we need the very low impedance line. The parallel connection transmission line could be implemented to obtain a low impedance line characteristic. To validity this approach, we are implemented a 10:1 unequal divider at center frequency 1 GHz. The performances of power divider agree with simulation results.

A Clock Regenerator using Two 2nd Order Sigma-Delta Modulators for Wide Range of Dividing Ratio

  • Oh, Seung-Wuk;Kim, Sang-Ho;Im, Sang-Soon;Ahn, Yong-Sung;Kang, Jin-Ku
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.10-17
    • /
    • 2012
  • This paper presents a clock regenerator using two $2^{nd}$ order ${\sum}-{\Delta}$ (sigma-delta) modulators for wide range of dividing ratio as defined in HDMI standard. The proposed circuit adopts a fractional-N frequency synthesis architecture for PLL-based clock regeneration. By converting the integer and decimal part of the N and CTS values in HDMI format and processing separately at two different ${\sum}-{\Delta}$ modulators, the proposed circuit covers a very wide range of the dividing ratio as HDMI standard. The circuit is fabricated using 0.18 ${\mu}m$ CMOS and shows 13 mW power consumption with an on-chip loop filter implementation.

Unequal Dual-band Wilkinson Power Divider (비대칭 이중대역 전력분배기)

  • Kim, Byung-Chul;Lee, Soo-Jung;Kim, Young
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • This paper suggested a theoretical approach and an implementation for the design of an unequal Wilkinson power divider with a high dividing ratio operating at two-frequencies. The T-section transmission lines and the two-section of Monzon's theory are proposed to operate a dual-band application. To achieve the high dividing ratio divider, the high impedance line using a T-shaped structure and low impedance lines with periodic shunt open stubs are implemented. For the validation of this divider, a dual-band power divider with a high dividing ratio of 5 is simulated and measured at 1 GHz and 2 GHz. The measured performances of the divider are in good agreements with simulation results.

Development of Measurement System of Very Fast Transient Overvoltage (과도급준파전압측정계의 개발에 관한 연구)

  • Lee, B.H.;Kil, G.S.;Chung, S.J.;Kim, J.N.;Lee, J,S.;Lee, H.H.;Kim, J.K.;Lee, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1523-1525
    • /
    • 1994
  • This paper describes a proposed very fast transient overvoltages(VFTO) measurement system suited for established gas insulated switchgear(GIS). The detecting system consists of a shield electrode connected to a buffer amplifier, and the transmission of the detected signal to an oscilloscope is made through an optical fiber. The bandwidth of the measurement system is 5 Hz to 30MHz. When determining the voltage dividing ratio by use of the commercial frequency voltage, the error is less than 0.5 %. Also, the data were obtained by the electric field probe and the high voltage probe, and their deviation for voltage dividing ratio were less than 1 %.

  • PDF

A New Asymmetric Branch Line Hybrid Coupler without Ground Contact Problem of DGS (접지 접촉 문제가 없는 새로운 DGS 비대칭 브랜치 라인 하이브리드 결합기)

  • Lim, Jong-Sik;Cha, Hyeon-Won;Jeong, Yong-Chae;Park, Ung-Hee;Ahn, Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1416-1421
    • /
    • 2008
  • A 10 dB branch line hybrid coupler included with defected ground structure (DGS) is proposed. In this contribution, a contact between the grounded metal housing and DGS is avoided, which has been a serious problem in applying DGS to high frequency circuits. An isolation between the metal housing and the DGS pattern is provided by inserting additional substrate between DGS and the metal package. Therefore, it is possible to design branch line hybrid couplers having highly asymmetric power dividing ratio using these DGS structure, which is demonstrated in this paper. The designed and fabricated branch line hybrid coupler using DGS is well packaged in a metal housing without touching the ground metal directly. The measurement is performed under realistic practical operating situations because it is packaged in a metal housing. The measured performances of the fabricated 10dB coupler shows a 1:9 asymmetric power dividing ratio at output ports, as predicted. In addition, the measured performances in terms of matching, isolation, and phase difference are in excellent agreement with the simulated characteristics.

DISTRIBUTION OF FUEL MASS AFTER WALL IMPINGEMENT OF DIESEL SPRAY

  • Ko, K.N.;Huh, J.C.;Arai, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.493-500
    • /
    • 2006
  • Investigation on the fuel adhering on a wall was carried out experimentally to clarify the characteristics of impinging diesel sprays. Diesel sprays were injected into a high-pressure chamber of cold state and impinged to a wall having various impingement distances and ambient pressures. Photographs of both the fuel film and the post-impingement spray were taken through a transparent wall. Adhered fuel mass on a wall was measured by means of dividing into two types of fuel state: the fuel film itself; and sparsely adhered fuel droplets. Adhering fuel ratio was predicted and further the distribution of fuel mass for impinging diesel spray was analyzed as a function of time. As result, with an increase of the ambient pressure, both the maximum fuel film diameter and the adhered fuel ratio decreased. Based on some assumptions, the adhering fuel mass increased rapidly until the fuel film diameter approached the maximum value, and then increased comparatively gradually.

Steady-Flow Characteristics and Its Influence on Spray for Direct Injection Diesel Engine

  • Jeon, Chung-hwan;Park, Seung-hwan;Chang, Young-june
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.986-998
    • /
    • 2002
  • Flow and spray characteristics are critical factors that affect the performance and exhaust emissions of a direct injection diesel engine. It is well known that the swirl control system is one of the useful ways to improve the fuel consumption and emission reduction rate in a diesel engine. However, until now there have only been a few studies on the effect of flow on spray. Because of this, the relationship between the flow pattern in the cylinder and its influence on the behavior of the spray is in need of investigation. First, in-cylinder flow distributions for 4-valve cylinder head of DI (Direct Injection) Diesel engine were investigated under steady-state conditions for different SCV (Swirl Control Valve) opening angles using a steady flow rig and 2-D LDV (Laser Doppler Velocimetry). It was found that swirl flow was more dominant than that of tumble in the experimented engine. In addition, the in-cylinder flow was quantified in terms of swirl/tumble ratio and mean flow coefficient. As the SCV opening angle was increased, high swirl ratios more than 3.0 were obtained in the case of SCV -70° and 90°. Second, spray characteristics of the intermittent injection were investigated by a PDA (Phase Doppler Anemometer) system. A Time Dividing Method (TDM) was used to analyze the microscopic spray characteristics. It was found that the atomization characteristics such as velocity and SMD (Sauter Mean Diameter) of the spray were affected by the in-cylinder swirl ratio. As a result, it was concluded that the swirl ratio improves atomization characteristics uniformly.

New low-complexity segmentation scheme for the partial transmit sequence technique for reducing the high PAPR value in OFDM systems

  • Jawhar, Yasir Amer;Ramli, Khairun Nidzam;Taher, Montadar Abas;Shah, Nor Shahida Mohd;Audah, Lukman;Ahmed, Mustafa Sami;Abbas, Thamer
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.699-713
    • /
    • 2018
  • Orthogonal frequency division multiplexing (OFDM) has been the overwhelmingly prevalent choice for high-data-rate systems due to its superior advantages compared with other modulation techniques. In contrast, a high peak-to-average-power ratio (PAPR) is considered the fundamental obstacle in OFDM systems since it drives the system to suffer from in-band distortion and out-of-band radiation. The partial transmit sequence (PTS) technique is viewed as one of several strategies that have been suggested to diminish the high PAPR trend. The PTS relies upon dividing an input data sequence into a number of subblocks. Hence, three common types of the subblock segmentation methods have been adopted - interleaving (IL-PTS), adjacent (Ad-PTS), and pseudorandom (PR-PTS). In this study, a new type of subblock division scheme is proposed to improve the PAPR reduction capacity with a low computational complexity. The results indicate that the proposed scheme can enhance the PAPR reduction performance better than the IL-PTS and Ad-PTS schemes. Additionally, the computational complexity of the proposed scheme is lower than that of the PR-PTS and Ad-PTS schemes.