• Title/Summary/Keyword: High damping

Search Result 1,075, Processing Time 0.028 seconds

High-Performance Damping Device for Suppressing Vibration of Stay Cable (사장 케이블 제진을 위한 고성능 감쇠 장치)

  • Jung Hyung-Jo;Park Chul-Min;Jang Ji-Eun;Park Kyu-Sik;Lee In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.489-496
    • /
    • 2005
  • In this paper, the feasibility of the high-performance damping device vibration suppression of stay cables has been investigated. The proposed damping system consists of a linear viscous damper and a scissor-jack-type toggle linkage. Since the mechanism of the scissor-jack-type toggle linkage amplifies the relative displacement of the linear viscous damper, it is expected that the capacity of the viscous damper used in the scissor-jack-damper energy dissipation system can be reduced without the loss of the control performance. Numerical simulation results demonstrate the efficacy of the damping system employing the scissor-jack-type toggle linkage. Therefore, the proposed damping system could be considered as one of the promising candidates for suppressing vibration of stay cable.

  • PDF

Power Flow Analysis of Vibration of a Plate Covered with a Damping Sheet (제진 평판 진동에 대한 파워흐름해석)

  • Lee, Jin-Young;Kil, Hyun-Gwon;Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.530-536
    • /
    • 2009
  • In this paper, the power flow analysis(PFA) has been used to analyze the vibration of a plate covered with a damping sheet. Experiments have been performed to measure the loss factor and frequency response functions of the plate covered with the damping sheet. The data for the loss factor has been used as the input data to predict the vibration of the coupled plates with PFA. The comparison between the experimental results and the predicted PFA results for the frequency response functions has been performed. It showed that PFA can be effectively used to predict structural vibration of a plate covered with a damping sheet in medium-to-high frequency range.

Application of High Damping Alloys for Vibration Reduction in Bridge Expansion Joints (Fe-Mn 제진합금을 적용한 교량용 신축이음장치의 진동저감 효과에 관한 연구)

  • Kim, T.H.;Baik, J.H.;Han, D.W.;Kim, J.C.;Baik, S.H.;Yoo, M.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1019-1023
    • /
    • 2006
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Fe-Mn Damping alloy with a combination of high damping capacity and good mechanical properties can provide attractive technical and economical solutions to problems involving seismic, shock and vibration isolation. We have studied the noise and vibration characteristic of Dampalloy and checked Dampalloy reduced noise about 3.9dB and vibration about 15.9 times as compared conventional material through laboratory research. With this result, we obtained a good possibility of material substitution about the bridge expansion joint

  • PDF

Application of High Damping Alloys for Vibration Reduction in Rail Joint Bar (방진합금을 적용한 철도레일 이음매판의 진동저감 효과에 관한 연구)

  • Baik, S.H.;Kim, J.C.;Han, D.W.;Baik, J.H.;Kim, T.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.570-573
    • /
    • 2004
  • Conventional methods for reducing vibration in engineering designs may be undesirable in conditions where size or weight must be minimized, or where complex vibration spectra exist. Some alloys with a combination of high damping capacity and good mechanical properties can provide attractive techanical and economical solutions to problems involving seismic, shock and vibration isolation. In this paper, it showed the noise and vibration characteristic was compared conventional rail joint to improved rail joint(damping alloy) for reducing noise and vibration. Its applicability to rail joint is discussed.

  • PDF

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 박철휴;안상준;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

Seismic Retrofit Using Damping Devices for Short-period Structures Excited by Ground Accelerations Similar to Gyeong-ju Earthquakes (감쇠장치를 사용한 경주지진과 유사한 특성을 가지는 지반가속도로 가진된 단주기구조물 내진성능보강)

  • Roh, Ji Eun;Lee, Sang Hyun;Seo, Jun Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.503-508
    • /
    • 2016
  • In this study, effectiveness of seismic retrofitting methods using passive damping devices was investigated through numerical analyses of short-period structures under earthquakes which have short-duration and high-frequency impulse characteristics similar to Geyongju earthquakes. Displacement spectra of elastic systems and ductility demand of inelastic systems were evaluated by increasing viscous or friction damping. The damping devices could reduce responses of the structures with shorter structural period than 0.2s. The earthquakes similar to impulse load did not induce the responses of the structures with longer period than 0.4s, and the effects of the damping devices which generates damping forces proportional to structural responses became insignificant.

Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings (고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

Quasi-steady Across-wind Aerodynamic Damping of Tall Structures

  • Nguyen, Cung Huy;Long, Doan-Sy;Nguyen, Dinh Tung
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • The paper presents a generalization of existing analytical approaches to determine the across-wind aerodynamic damping of tall structures through the quasi-steady theory. The theory takes into account the nature of non-uniform wind, structural mode shapes and the variation of structural parameters. Numerical applications on a prototype high-rise building and a real sculptural tower point out that the common approach may be over simplified, giving rise to inappropriate predictions of the aerodynamic damping. The role of the structural mode shapes, usually being neglected for uniform structures, is then highlighted.

Damping of a taut cable with two attached high damping rubber dampers

  • Cu, Viet Hung;Han, Bing;Wang, Fang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1261-1278
    • /
    • 2015
  • Due to their low intrinsic damping, stay cables in cable-stayed bridges have often exhibited unanticipated and excessive vibrations which result in increasing maintenance frequency and disruption to normal operations of the entire bridges. Mitigation of undesired cable vibration can be achieved by attaching an external damping device near the anchorage. High Damping Rubber (HDR) dampers have many advantages such as compact size, better aesthetics, easy maintenance, temperature stability, and cost benefits; therefore, they have been widely used to increase cable damping. Although a single damper has been shown to reduce cable vibrations, it is not the most effective method due to geometric constraints. This paper proposes the use of two HDR dampers to improve effectiveness and robustness in suppressing cable vibration. Oscillation parameters of the cable-dampers system were investigated in detail by modeling the stay cable as a taut string and each HDR damper as complex-valued impedance and by using an analytical formulation of the complex eigenvalue problem. The problem of two HDR dampers arbitrarily located along a cable is solved and the solution is discussed. Asymptotic formulas to calculate the damping ratios of the cable with two HDR dampers installed near the anchorage(s) are proposed and compared with the exact solutions. Further, a design example is presented in order to justify the methodology. The results of this study show that when the two HDR dampers are installed close to each other on the same end of the cable, some interaction between the dampers leads to reduced damping ratio. When the dampers are on the opposite ends of the cable, they are effective in increasing damping ratio and can provide better vibration reduction to multiple modes.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.