• 제목/요약/키워드: High coefficient of thermal expansion

검색결과 313건 처리시간 0.026초

레이저 스페클간섭법에 의한 STS430의 열팽창계수 측정 (Thermal Expansion Coefficient Measurement of STS430 by Laser Speckle Interferometry)

  • 김경석;이항서;정현철;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.29-33
    • /
    • 2004
  • This paper presents ESPI system for the measurement of thermal expansion coefficient of STS430 up to 1,000$^{\circ}C$. Existing methods, strain gauge and moire have the limitation of contact to object and do not supply the coefficient up to 800$^{\circ}C$. There needs to measure the data up to 800$^{\circ}C$, because heat resistant materials have high melting temperature up to 1,000$^{\circ}C$. In previous studies related to thermal strain analysis, the quantitative results are not reported by ESPI at high temperature, yet. In-plane ESPI and vacuum chamber for the reduction of air turbulence and oxidation are designed for the measurement of the coefficient up to 1,000$^{\circ}C$and speckle correlation fringe pattern images are processed by commercial image filtering tool-smoothing, thinning and enhancement- to obtain quantitative results, which is compared with references data. The comparison shows two data are agreed within 4.1% blow 600$^{\circ}C$ however, there is some difference up to 600$^{\circ}C$. Also, the incremental ratio of the coefficient is changed up to 800$^{\circ}C$. The reason is the phase transformation of STS430 probably begins at 800$^{\circ}C$.

  • PDF

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

Thermal Strain Measurement of Austin Stainless Steel (SS304) during a Heating-cooling Process

  • Ha, Ngoc San;Le, Vinh Tung;Goo, Nam Seo;Kim, Jae Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.206-214
    • /
    • 2017
  • In this study, measurement of thermophysical properties of materials at high temperatures was performed. This experiment employed a heater device to heat the material to a high temperature. The images of the specimen surface due to thermal load at various temperatures were recorded using charge-coupled device (CCD) cameras. Afterwards, the full-field thermal deformation of the specimen was determined using the digital image correlation (DIC) method. The capability and accuracy of the proposed technique are verified by two experiments: (1) thermal deformation and strain measurement of a stainless steel specimen that was heated to $590^{\circ}C$ and (2) thermal expansion and thermal contraction measurements of specimen in the process of heating and cooling. This research focused on two goals: first, obtaining the temperature dependence of the coefficient of thermal expansion, which can be used as data input for finite element simulation; and second, investigating the capability of the DIC method in measuring full-field thermal deformation and strain. The results of the measured coefficient of thermal expansion were close to the values available in the handbook. The measurement results were in good agreement with finite element method simulation results. The results reveal that DIC is an effective and accurate technique for measuring full-field high-temperature thermal strain in engineering fields such as aerospace engineering.

고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성 (Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process)

  • 안인섭;박동규;안광복;신승목
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

LMC와 RSLMC의 열팽창 특성에 관한 연구 (A Study on Thermal Expansion of LMC and RSLMC)

  • 임홍범;최성용;최판길;윤경구
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.165-171
    • /
    • 2004
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. However, If the thermal expansion properties of overlay concrete (latex-modified concretes) are big different from that of substrate (ordinary portland cement concrete), these would cause a big interfacial stresses and result in premature failure. Therefore, the purposes of this study were to investigate thermal expansion characteristics of latex-modified concrete with cement types. The result of thermal expansion showed the coefficient of thermal expansion of concretes increased with latex inclusion. The coefficient of thermal expansion of RSLMC was a little smaller than that of LMC, which might be due to the finer cement grain, compacter internal, and stiffer properties of concrete. However, the coefficients of LMC and RSLMC were quite similar to that of ordinary cement concrete. Thus, this would not cause an interfacial stresses and will enable to ensure long-term performance of concrete bridge deck overlays.

  • PDF

고팽창 결정화 유리의 유약에 관한 연구 (Studies on the Glaze for High Expansion Glass Ceramics)

  • 박용완;강은태;박찬성;전문덕
    • 한국세라믹학회지
    • /
    • 제17권4호
    • /
    • pp.213-216
    • /
    • 1980
  • A glass-ceramics material of composition %SiO_2$: 38.50, $Al_2O_3$: 26.00, $Na_2O$: 18.00, CaO: 6.00, MgO: 4.00, $TiO_2$: 7.50 was strengthened by coating a series of glazes$(SiO_2-B_2O_3-Al_2O_3-CaO-PbO-Na_2O-)$, which has lower thermal expansion coefficient than that of the glass-ceramics. The thermal expansion coefficient of the glazes ranges $80~90{\times}10^{-7}$cm/cm/$^{\circ}C$, whereas that of the glass-ceramics is $115{\times}10^{-7}$cm/cm/$^{\circ}C$. The glass-ceramics was identified to be composed of nepheline, carnegieite low form, and meta sodium silicate crystal by X-ray diffraction phase analysis. The glaze, having lower melting point and appropriate thermal expansion coefficient, was tried to be stable and good at secondary heat treatment.

  • PDF

스트레인 게이지를 이용한 암석의 열팽창계수 측정 (Measurement of Thermal Expansion Coefficient of Rock using Strain Gauge)

  • 박찬;김형목;신중호;박연준;천대성
    • 터널과지하공간
    • /
    • 제17권6호
    • /
    • pp.475-483
    • /
    • 2007
  • 에너지원으로서 LNG 수요뿐 아니라 온실가스인 이산화탄소의 처분에 대한 필요성이 점차 증가되고 있어, 이를 위한 많은 저장시설이 요구된다. 이러한 저장시설은 안전성과 국토의 효율적 이용 등으로 인하여 지하화하는 경향이 있다. 이와 같은 온도특성을 고려해야하는 물질에 대한 지하저장시설의 건설에 있어서, 암석의 열물성은 열역학적 특성과 함께 저장시설의 설계 및 유지관리를 위한 중요한 요소이다. 본 연구에서는 암석입자의 크기와 실험온도범위를 고려하여 스트레인 게이지를 이용하여 암석의 열팽창계수를 실험적으로 측정하였다. 실험결과 열팽창계수는 온도가 내려감에 따라 감소하였으며, 국내 대표암석인 화강암에 대한 선열팽창계수의 온도관계식을 제안할 수 있었다. 본 연구에서 수행된 온도변화에 따른 시험결과는 지하저장소의 열역학적 안정성 해석과 열전파 특성을 규명하기 위한 해석에 주요 자료로 활용될 수 있을 것이다.

$Li_2O-Al_2O_3-SiO_2$계 소지의 Mullite 첨가에 의한 열적, 기계적 특성에 관한 연구 (Thermal, Mechanical Properties of LAS with the Addition of Mullite)

  • 최도문;유재근;이응상
    • 한국세라믹학회지
    • /
    • 제30권5호
    • /
    • pp.381-388
    • /
    • 1993
  • Due to the anisotropy of thermal expansion, LAS system which has low thermal expansion property is hard to obtain a dense sintered body. Therefore, the thermal expansion coefficient and the mechanical strength were decreased. In this study, mullite, which has good mechanical properties in high temperature and comparatively low thmeral expansion coefficient, was taken as a additive in LAS system. And then, sintering, thermal, and mechanical properties were investigated. The results are follows; When mullite is added in eucryptite composition (Li2O.Al2O3.2SiO2) of LAS system, the creation of liquid phase results in the densification of sintered body and the specimen sintered at 136$0^{\circ}C$ for 2 hours shows optimum sintering condition. With the addition of mullite in eucryptite composition, mechanical strength is increased by the control of grain growth. Especially, flexual strength of EM0 specimen was about double value than the basic composition. Thermal expansion coefficients of EM0 and EM15 specimens sintered at 136$0^{\circ}C$ were -8.23$\times$10-6/$^{\circ}C$ and -4.90$\times$10-6/$^{\circ}C$ in the temperature range of RT.~80$0^{\circ}C$. As the mullite content are increased, negative thermal expansion ratios are decreased.

  • PDF

고강도 인바계 합금의 열팽창 및 인장 특성에 미치는 바나듐과 탄소 원소 첨가 영향 (Effects of V and C additions on the Thermal Expansion and Tensile Properties of a High Strength Invar Base Alloy)

  • 윤애천;윤신천;하태권;송진화;이기안
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.44-51
    • /
    • 2015
  • The current study seeks to examine the effects of V and C additions on the mechanical and low thermal expansion properties of a high strength invar base alloy. The base alloy (Fe-36%Ni-0.9%Co-2.75%Mo-0.7Cr-0.23Mn-0.17Si-0.3%C, wt.%) contains $Mo_2C$ carbides, which form as the main precipitate. In contrast, alloys with additions of 0.4%V+0.3%C (alloy A) or 0.4%V+0.45%C (alloy B) contain $Mo_2C$+[V, Mo]C carbides. The average thermal expansion coefficients of these high strength invar based alloys were measured in the range of $5.16{\sim}5.43{\mu}m/m{\cdot}^{\circ}C$ for temperatures of $15{\sim}230^{\circ}C$. Moreover, alloy B showed lower thermal expansion coefficient than the other alloys in this temperature range. For the mechanical properties, the [V, Mo]C improved hardness and strengths(Y.S. and T.S.) of the high strength invar base alloy. T.S.(tensile strength) and Y.S.(yield strength) of hot forged alloy B specimen were measured at 844.6MPa and 518.0MPa, respectively. The tensile fractography of alloy B exhibited a ductile transgranular fracture mode and voids were initiated between the [V, Mo]C particles and the matrix. Superior properties of high strength and low thermal expansion coefficient can be obtained by [V, Mo]C precipitation in alloy B with the addition of 0.4%V and 0.45%C.

플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산 (Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation)

  • 김명재;곽종욱;김지웅;김경남
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.422-429
    • /
    • 2023
  • High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.