• Title/Summary/Keyword: High Voltage Direct Current Transmission

Search Result 50, Processing Time 0.022 seconds

Planning of HVDC System Applied to Korea Electric Power Grid

  • Choi, DongHee;Lee, Soo Hyoung;Son, Gum Tae;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2018
  • This paper proposes pre-analysis on planning of high-voltage direct current (HVDC) transmission system applied to Korea electric power grid. HVDC transmission system for interface lines has been considered as alternative solution for high-voltage AC transmission line in South Korea since constructing new high-voltage AC transmission lines is challenging due to political, environmental and social acceptance problems. However, the installation of HVDC transmission system as interface line in AC grid must be examined carefully. Thus, this paper suggests three scenarios to examine the influences of the installation of HVDC transmission system in AC grid. The power flow and contingency analyses are carried out for the proposed scenarios. Power reserves in metro area are also evaluated. And then the transient stability analysis focusing on special protection scheme (SPS) operations is analyzed when critical lines, which are HVDC lines or high voltage AC lines, are tripped. The latest generic model of HVDC system is considered for evaluating the impacts of the SPS operations for introducing HVDC system in the AC grid. The analyses of proposed scenarios are evaluated by electromechanical simulation.

Control Strategy of MMC-HVDC under Unbalanced Grid Voltage Conditions

  • Zhang, Jianpo;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1499-1507
    • /
    • 2015
  • High voltage direct current transmission based on modular multilevel converter (MMC-HVDC) is one of the most promising power transmission technologies. In this study, the mathematical characteristics of MMC-HVDC are analyzed in a synchronous rotational reference frame. A hybrid current vector controller based on proportional integer plus resonant is used to uniformly control the DC and double-base frequency AC currents under unbalanced grid voltage conditions. A corresponding voltage dependent current order limiter is then designed to solve the overcurrent problems that may occur. Moreover, the circulating current sequence components are thoroughly examined and controlled using a developed circulating current suppressor. Simulation results verify the correctness and effectiveness of the proposed control schemes.

The Development of System for Measuring Ion Generated from HVDC Overhead Transmission Line (초고압 직류 가공 송전선로에서 발생되는 이온 계측시스템 개발)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong;Lim, Jae-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2035-2040
    • /
    • 2008
  • The electrical discharge of high voltage direct current(HVDC) overhead transmission line generate audible noise, radio noise, electric field, ion current and induced voltage on the ground. These items are major factors to design environmentally friendly configuration of DC transmission line. Therefore, HVDC transmission lines must be designed to keep all these corona effects within acceptable levels. Several techniques have been used to assess interference caused by ions on HVDC overhead transmission line. In this study, to assess the ion characteristic of DC line, the ion current density and induced voltage caused by ion flow were measured by plate electrodes manufactured from a metal flat board and charged bodies, respectively. The charged body has two types of cylinder and cylindrical plate. From the results of calibration experiments, the sensitivity of flat electrode and charged body can be obtained. At present, the developed system is used to investigate the ion generation characteristics of Kochang DC ${\pm}500kV$ test line.

Scheme for Reducing Harmonics in Output Voltage of Modular Multilevel Converters with Offset Voltage Injection

  • Anupom, Devnath;Shin, Dong-Cheol;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1496-1504
    • /
    • 2019
  • This paper proposes a new THD reduction algorithm for modular multilevel converters (MMCs) with offset voltage injection operated in nearest level modulation (NLM). High voltage direct current (HVDC) is actively introduced to the grid connection of offshore wind powers, and this paper deals with a voltage generation technique with an MMC for wind power generation. In the proposed method, third harmonic voltage is added for reducing the THD. The third harmonic voltage is adjusted so that each of the pole voltage magnitudes maintains a constant value with a maximum number of (N+1) levels, where N is the number of sub-modules per arm. By using the proposed method, the THD of the output voltage is mitigated without increasing the switching frequency. In addition, the proposed method has advantageous characteristics such as simple implementation. As a part of this study, this paper compares the THD results of the conventional method and the proposed method with offset voltage injection to reduce the THD. In this paper, simulations have been carried out to verify the effectiveness of the proposed scheme, and the proposed method is implemented by a HILS (Hardware in the Loop Simulation) system. The obtained results show agreement with the simulation results. It is confirmed that the new scheme achieved the maximum level output voltage and improved the THD quality.

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

Improved Pre-charging Method for MMC-Based HVDC Systems Operated in Nearest Level Control

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.127-135
    • /
    • 2017
  • Recently the researches on modular multi-level converter (MMC) are being highlighted because high quality and efficient power transmission have become key issues in high voltage direct current (HVDC) systems. This paper proposes an improved pre-charging method for the sub-module (SM) capacitor of MMC-based HVDC systems, which operates in the nearest level control (NLC) modulation and does not need additional circuits or pulse width modulation (PWM) techniques. The feasibility of the proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 SMs per each arm. Hardware experiments with a scaled prototype have also been performed in the lab to confirm the simulation results.

New Pre-charging Method for Modular Multi-level Converter Operated in Nearest Level Control Modulation (근사 계단 제어 변조로 동작하는 모듈형 멀티 레벨 컨버터를 위한 새로운 초기 충전 기법)

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1655-1663
    • /
    • 2016
  • Recently the researches on Modular Multi-level Converter (MMC) are being highlighted because high quality and efficient power transmission are key issues in the High Voltage Direct Current (HVDC) transmission system. This paper proposes an improved pre-charging method for the sub-module capacitors in MMC that operates in Nearest Level Control (NLC) modulation. The proposed method does not require additional circuits or Pulse Width Modulation (PWM) techniques. The feasibility of proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 sub-modules per each arm. Hardware experiments with a scaled prototype were performed in the lab to confirm the simulation results.

Characterization Test of Sub-Modules for High Voltage DC Transmission System-Based Modular Multi-Level Converter (고압 직류송전망을 위한 모듈형 멀티레벨 컨버터의 서브모듈 특성시험)

  • Seo, Dong-Woo;Jeong, Jong-Kyou;Jung, Hong-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.344-345
    • /
    • 2019
  • High Voltage Direct Current (HVDC) 시스템은 고압 직류 송전을 위한 시스템으로서 단위 유닛인 서브모듈로 구성된 모듈형 멀티레벨 컨버터 구조를 갖는다. 서브모듈의 신뢰성 확보 및 설계 검증은 HVDC 시스템의 성능과 효율, 크기를 결정짓는 중요한 요소이다. 본 논문에서는 (주)효성이 개발하는 200MW 모듈형 멀티레벨 컨버터 서브모듈의 성능을 검증하기 위한 특성시험을 나타낸다. 특성시험을 통해서 개발 중인 서브모듈의 성능과 보호동작을 검증한다.

  • PDF

A Design Methodology of Digital Controller Considering Time Delay Effect for a Modular Multilevel Converter VSC HVDC System (모듈형 멀티레벨 전압형 HVDC 시스템을 위한 시간 지연을 고려한 디지털 제어기의 설계)

  • Song, Ji-Wan;Ku, Nam-Joon;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • A modular multilevel converter is widely adapted for a high-voltage direct current power transmission system. This study proposes a design methodology for a novel digital control that mitigates the negative effects caused by time delay, including communication transport delay for a modular multilevel converter. The modeling and negative effect of time delay are analyzed theoretically in a frequency domain, and its compensation methodology based on an inverse model is described fully with practical considerations. The proposed methodology is verified through several simulation results using a modular 21-level converter system.

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.