• Title/Summary/Keyword: High Temperature Structure

Search Result 3,122, Processing Time 0.04 seconds

Temperature Measurement by Radiation Wavelength of High Temperature CO2 gas (고온 CO2 가스의 복사 파장을 이용한 부분별 온도 측정)

  • Maeng, Saeromg;Yoo, Miyeon;Kim, Saewon;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.315-316
    • /
    • 2014
  • Combustion gases emit various radiation signals by chemical reaction and excited molecules in combustion system. Since temperature measurement of combustion system is very difficult, non-contact temperature measuring methods are being researched. In this paper, we propose optical system of simple structure and implement technique for measuring temperature partially in furnace using radiation wavelength signals of high temperature $CO_2$ gas generated during combustion.

  • PDF

Thermal stress of concrete structure at high temperature considering inelastic thermal strain change (고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포)

  • 강석원;홍성걸;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF

Study on Thermal and Structural Properties of Epoxy/Elastomer Blend (에폭시/엘라스토머 블렌드의 열적 및 구조적 특성에 관한 연구)

  • Lee Kyoung-Yong;Lee Kwan-Woo;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.556-560
    • /
    • 2004
  • In this paper, thermal and structural properties of epoxy/elastomer blend were measured by DSC, TGA and FESEM. Specimens were made of dumbbell forms by the ratio of 5, 10, 15, and 20[phr] by changing elastomer content. The measuring temperature ranges of DSC were from -20[℃] to 150[℃] and heating rate was 4[℃/min]. And the measuring temperature ranges of TGA were from 0[℃] to 800[℃], and heating rate was 5[℃/min]. Also we observed structure of specimens through FESEM with magnification of 1000 times and voltage of 15[kV] by breaking quenched specimens. As experimental results, we could know that thermal and structural properties were improved according to decrease of elastomer content. Because it increased glass transition temperature, high temperature and structure of elastic epoxy.

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

Preparation of Poly(ethylene naphthalate) Film Coated with Silicones for High Temperature Insulator (실리콘 코팅을 이용한 poly(ethylene naphthalate) 고온용 방열 필름의 제조)

  • Lee, Soo;Na, Cha-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 2007
  • The surface of poly(ethylene naphthalate) film applicable to high temerature insulator for convection microwave oven was modified with silicone coating solutions in the presence of silane crosslinking agent. The structure and properties of the PEN films were investigated by using Fourier transform IR spectroscopy, viscometry, microscopy, and tensile tests. The experimental results showed that the coating with silicone enhanced thermal stability up to $200^{\circ}C$, and slightly lowered the tensile strength and elongation of the PEN films. Judging from dimensional stability results the silicone coated PEN films can not be used for higher temperature insulator above $230^{\circ}C$. Serious dimensional contraction of films was obtained during heat treatment at $250^{\circ}C$ even for 1h. However, the surface of those films still have same chemical structure of silicones. Therefore, If we use PEN film prestretched at $230^{\circ}C$ as base one it will be possible to prepare a high temperature insulator up to $230^{\circ}C$. Conclusively, a silicone coated PEN film can be suitable for the application to convection microwave oven door insulator at high temperature up to $230^{\circ}C$.

Development and Application of the Super High Temperature Thermal Test Equipment (초고온 열하중 부가장치 개발 및 적용)

  • Jun, Joon-Tak;Kang, Hui-Won;Yang, Myung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This paper describes test result of the Supersonic Wing Structure and the utility of thermal test equipment, which is possible to heat rapidly and continuously above $1,000^{\circ}C$, the durability and reliability of which are improved compared with the existing equipment. Through the test, we could predict the amount of strength reduction of the wing due to aerodynamic heating, caused by exposure of high temperature. Recently the aerodynamic heating temperature of the supersonic flying object is rapidly increased. It is possible to carry out the High Temperature Strength Test on the hypersonic speed flying object with the newly designed thermal test equipment. Because of that, we can upgrade the High Temperature Strength Structure Test technique and test reliability.

Development of the High Temperature Silicon Pressure Sensor (고온용 실리콘 압력센서 개발)

  • Kim, Mi-Mook;Nam, Tae-Chul;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • A pressure sensor for high temperature was fabricated by using a SDB(Silicon-Direct-Bonding) wafer with a Si/$SiO_{2}$/ Si structure. High pressure sensitivity was shown from the sensor using a single crystal silicon of the first layer as a piezoresistive layer. It also was made feasible to use under the high temperature as of over $120^{\circ}C$, which is generally known as the critical temperature for the general silicon sensor, by isolating the piezoresistive layer dielectrically and thermally from the silicon substrate with a silicon dioxide layer of the second layer. The pressure sensor fabricated in this research showed very high sensitivity as of $183.6{\mu}V/V{\cdot}kPa$, and its characteristics also showed an excellent linearity with low hysteresis. This sensor was usable up to the high temperature range of $300^{\circ}C$.

Studies on the Preparation of High Strength and High Modulus Poly(vinyl alcohol) Fiber (II) -Structure and Properties of Zone Drawn High Molecular Weight Poly(vinyl alcohol) Fiber- (고강도 및 고탄성률 폴리비닐알코올 섬유의 제조에 관한 연구 (II) -존연신된 고분자량 폴리비닐알코올 섬유의 구조 및 물성-)

  • Lee, Sung-Jun;Kim, Joon-Ho;Yoon, Won-Sik;Jeon, Han-Yong;Lyoo, Won-Seok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.76-79
    • /
    • 2003
  • Recently, many attempts have been made to develop high strength and high modulus fibers from conventional polymers such as poly(vinyl alcohol) (PVA)[1-4] and polyethylene (PE). PVA has potentiality to yield high strength and high modulus fiber, since they have high theoretically attainable moduli because of their planar zig-zag structure. As PVA has a melting temperature as high as 230$^{\circ}C$ in contrast to PE with a low melting temperature such as 130$^{\circ}C$, it seems possible that high strength and high modulus fibers comparable to Aramid can be fabricated from PVA. (omitted)

  • PDF

Evaluation of Bond Strength of a Fire-Damaged Reinforced Concrete Structure (화재로 인해 손상 받은 철근콘크리트 구조물의 콘크리트 부착강도 평가)

  • 심종성;문도영;이정환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.211-213
    • /
    • 2003
  • Evaluation of bond strength of a fire-damaged reinforced concrete structure for determining whether to reuse, reinforced, or abandon the structure is very important. Recently, calculating method for changes in bond strength of rebars is proposed by C. Chiang. The equation is relating the ratio of residual bond strength, R, to temperature, T, and exposure time, t. This study presented and verified a general process for evaluating damage to bond strength of RC structure arising from high temperature.

  • PDF

Effects of Si Content and Austempering Conditions on Properties of High Carbon Cast Steel (고탄소강의 특성에 미치는 규소 함량 및 오스템퍼링 조건의 영향)

  • Kim, Won-Bae;Kim, Myung-Sik;Kim, Jong-Chul;Sohn, Ho-Sang;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • This study has been carried out to investigate the microstructure of austempered high carbon cast steel with the variation of silicon and heat treatment conditions. The results show that an lower ausferritic structure is formed at the low austemepring temperature ($250{\sim}300^{\circ}C$) and an upper ausferritic structure is formed at the high austemepring temperature ($350{\sim}400^{\circ}C$). As an austempering temperature increased, the retained austenite volume fraction increased, however hardness decreased. Also, as a silicon content increased, the precipitation of cementite was suppressed, therefore 2nd reaction of autempering transformation was delayed.