• Title/Summary/Keyword: High Range Resolution Radar

Search Result 101, Processing Time 0.025 seconds

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

Target Length Estimation of Target by Scattering Center Number Estimation Methods (산란점 수 추정방법에 따른 표적의 길이 추정)

  • Lee, Jae-In;Yoo, Jong-Won;Kim, Nammoon;Jung, Kwangyong;Seo, Dong-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.543-551
    • /
    • 2020
  • In this paper, we introduce a method to improve the accuracy of the length estimation of targets using a radar. The HRRP (High Resolution Range Profile) obtained from a received radar signal represents the one-dimensional scattering characteristics of a target, and peaks of the HRRP means the scattering centers that strongly scatter electromagnetic waves. By using the extracted scattering centers, the downrange length of the target, which is the length in the RLOS (Radar Line of Sight), can be estimated, and the real length of the target should be estimated considering the angle between the target and the RLOS. In order to improve the accuracy of the length estimation, parametric estimation methods, which extract scattering centers more exactly than the method using the HRRP, can be used. The parametric estimation method is applied after the number of scattering centers is determined, and is thus greatly affected by the accuracy of the number of scattering centers. In this paper, in order to improve the accuracy of target length estimation, the number of scattering centers is estimated by using AIC (Akaike Information Criteria), MDL (Minimum Descriptive Length), and GLE (Gerschgorin Likelihood Estimators), which are the source number estimation methods based on information theoretic criteria. Using the ESPRIT algorithm as a parameter estimation method, a length estimation simulation was performed for simple target CAD models, and the GLE method represented excellent performance in estimating the number of scattering centers and estimating the target length.

Target Recognition Method of DTV-Based Passive Radar Using Multi-Channel Combining Method (다중 채널 융합 기법을 이용한 DTV 기반 수동형 레이다의 표적 인식 방법)

  • Seol, Seung-Hwan;Choi, Young-Jae;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.794-801
    • /
    • 2017
  • In this paper, we proposed airborne target recognition using multi-channel combining method in DTV-based passive radar. By combining multi-channel signals, we obtained the HRRP with sufficient range resolution. HRRP was obtained by AR method or zero-padding. From the obtained HRRP, we extracted scattering centers by CLEAN algorithm using the gradient descent. We extracted feature vectors and performed target recognition after training neural network using the extracted feature vectors. To verify performance of proposed methods, we assumed frequency bands of three broadcasting transmitters operated in Korea(Mt. Gwan-ak, Mt. Yong-moon, Kyeon-wol-ak) and used full scale 3D CAD model of four targets. Also we compared the target recognition performance of the proposed method with that of using only single-channel of three broadcasting transmitters. As a result, proposed methods showed better performance than using only single-channel at three broadcasting transmitters.

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.

A Study on RCS and Scattering Point Analysis Based on Measured Data for Maritime Ship (실측자료 기반 함정 RCS 측정 및 산란점 분석 연구)

  • Jung, Hoi-In;Park, Sang-Hong;Choi, Jae-Ho;Kim, Kyung-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 2020
  • In order to set up radar cross section(RCS) reduction factors for a target, the scattering point position of the target should be identified through inverse synthetic aperture radar(ISAR) image analysis. For this purpose, ISAR image focusing is important. Maritime ship is non-linear maneuvering in the sea, however, which blur the ISAR image. To solve this problem, translational and rotational motion compensation are essential to form focused ISAR image. In this paper, hourglass and ISAR image analysis are performed on the collected data in the sea instead of using the prediction software tool, which takes much time and cost to make computer-aided design(CAD) model of the ship.

A Study on Analysis of Beat Spectra in a Radar System (레이다 시스템에서의 비트 스펙트럼 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2187-2193
    • /
    • 2010
  • A specific radar system can be implemented more easily using the frequency modulated continuous wave comparing with the pulse Doppler radar. It also has the advantage of LPI (low probability of interception) because of the low power and wide bandwidth characteristics. These radars are usually used to cover the short range area and to obtain the high resolution measurements of the target range and velocity information. The transmitted waveform is used in the mixer to demodulate the received echo signal and the resulting beat signal can be obtained. This beat signal is analyzed using the FFT method for the purpose of clutter removal, detection of a target, extraction of velocity and range information, etc. However, for the case of short signal acquisition time, this FFT method can cause the serious leakage effect which disables the detection of weaker echo signals masked by strong side lobes of the clutter. Therefore, in this paper, the weighting window method is analyzed to suppress the strong side lobes while maintaining the proper main lobe width. Also, the results of FFT beat spectrum analysis are shown under various environments.

Development and application of simulator for spotlight SAR image formation and quality assesment using RMA (RMA를 이용한 Spotlight SAR 영상형성 및 품질평가를 위한 시뮬레이터 개발 및 구현)

  • Kwak, Jun-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.183-194
    • /
    • 2011
  • Synthetic aperture radar (SAR) is widely used because of high resolution imaging capability in all weather and day/night condition. In this paper development of Spotlight SAR simulator is proposed for image quality analysis. Proposed SAR simulator is based on the SAR system design parameters so that SAR image performance can be expected which is essential throughout the full system development procedure from the initial concept design stage to the final in-flight calibration and validation stage. The raw data of ideal point target is first generated by taking account of the flight and imaging geometry and the various SAR system design parameters, and the Spotlight image formation algorithm is implemented in order to obtain the point target response. Finally the image quality of the generated raw data is analyzed in terms of spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio.

A Development of the High-Performance Signal Processor for the Compact Millimeter Wave Radar (소형 밀리미터파 레이더를 위한 고성능 신호처리기 개발)

  • Choi, Jin-Kyu;Ryu, Han-Chun;Park, Seung-Wook;Kim, Ji-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.161-167
    • /
    • 2017
  • Recently, small radar has been reduced in size and power consumption to cope with various operating environments. It also requires the development of a small millimeter wave radar with high range resolution to disable the system of target with a single strike. In this paper, we design and implement a signal processor that can be used in small millimeter wave radar. The signal processor for the small millmeter wave radar is designed with a digital IF(Intermediate Frequency) receiver and DFT(Discrete Fourier Transform) module capable of real time FFT operation for miniaturization and low power consumption. Also it was to leverage the FPGA(Field Programmable Gate Array) and DAC(Digital Analog Converter) as a means for correcting the distortion of signals that can occur in the receive path of the small millimeter wave radar to create a RF signal that is used by the system. Finally, we verified the signal processor presented through performance test

A Study on Signal Processing of Rear Radars for Intelligent Automobile (지능형 차량을 위한 후방 감시용 레이더 신호 처리 기법에 관한 연구)

  • Choi, Gak-Gyu;Han, Seung-Ku;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1070-1077
    • /
    • 2011
  • This paper introduces a radar signal processing technique for intelligent rear view monitoring of an automobile. The linear frequency modulation-frequency shift keying(LFM-FSK) waveform, which is the combination of frequency modulation continuous wave(FMCW) and frequency shift keying(FSK) waveform, is employed to simultaneously estimate the range, relative aspect angle, and velocity of an automobile. Hence, it can be applied to monitor the rear view of an automobile. FMCW waveform has high range resolution capability, but it produces ghost targets under a multiple target environment. In contrast, FSK waveform can provide high velocity resolution and avoids the problem of ghost targets. However, it fails to identify multiple targets along the radar's line of sight. With LFM-FSK waveform, we can estimate the ranges and velocities of multiple targets with very high resolution, which avoids the ghost target problem of an FMCW waveform. Simulation result shows that LFM-FSK wavefrom is suitable for use in the lane change assistance system for an automobile.

A Study on X-band Frequency Synthesizer for Radar Transceiver (레이더 송수신기용 X 밴드 주파수 합성기에 관한 연구)

  • Park, Dong-Kook;Lee, Hyun-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.444-448
    • /
    • 2006
  • In this paper, a frequency synthesizer for X-band FMCW radars is proposed. Some X-band FMCW radars have been used as a level sensor for tanker ship and the resolution of the level sensor may be mainly depend on linearity of frequency sweep. For a linear frequency sweep. the proposed synthesizer employs a phase-locked loop using prescalars and a high speed digital PLL chip. The measured results show that the linear frequency sweep range is from 10 GHz to 11 GHz and the output power of the synthesizer is minium 7 dBm. and the phase noise is about -80 dBc/Hz at 100 KHz offset from 11 GHz.