• 제목/요약/키워드: High Power Limiter

검색결과 154건 처리시간 0.025초

초전도한류기의 계통적용점 선정 프로그램 개발 (Development of HTS-FCL Location Selection Program in Power System)

  • 최흥관;윤재영;김종율;이승렬;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.321-323
    • /
    • 2003
  • Maximum short circuit current of modern power system is becoming so large that the current should transmission capability. Although there are various kinds of method to solve this, approached from super conductivity Fault Current Limiter application viewpoint among them. High Temperature Superconductor-Fault Current Limiter(HTS-FCL) development is progressing according to HTS technology development, and system application is tried. For actual system application of such super conductivity FCL, an efficient method to find FCL locations suitable for reduction of short circuit currents of more than one fault location is developed.

  • PDF

YBCO 박막을 이용한 배전급 저항형 초전도 한류기 (Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films)

  • 이방욱;박권배;강종성;김호민;오일성;심정욱;현옥배
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF

저항형 초전도한류기의 미래 배전계통 적용방안 (Application Scheme of Resistive HTS-FCL on Future New Distribution System)

  • 이승열;김종율;김호용;윤재영
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권5호
    • /
    • pp.212-216
    • /
    • 2005
  • This paper describes the application scheme of resistive HTS-FCL(High Temperature Superconducting-Fault Current Limiter) on future new distribution system. Future new distribution system means the power system to which applies the 22.9kV HTS cable with low-voltage and mass-capacity characteristics replacing the 154kv conventional cable in addition to HTS transformer and HTS-FCL. The fault current of future new distribution system will increase greatly because of the inherent characteristics of HTS transformer/cable and applications of distributed generations and spot networks and so on. This means that the HTS-FCL is necessary to reduce the fault current below the breaking capacity. This paper studies the appropriate location, parameters and the influences of HTS-FCL on future new distribution system. Finally, this paper suggests the reasonable basic parameters of resistive HTS-FCL for future KEPCO new distribution system.

자기결합형 고온초전도한류기의 과도전류 해석 (The Analysis of Transient currents in a Magnetic coupling High-Tc superconducting Fault Current Limiter)

  • 주민석;추용;임도현;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.24-26
    • /
    • 1995
  • In this paper, we investigated transient fault currents in a magnetic coupling High-Tc superconducting current limiter(HCL). It has an important effect on the reliability and stability of the power system. In order to analyze transient fault characteristics of HCL, we fabricated a magnetic coupling HCL and tested it in different fault conditions. An important parameter of design and manufacture which makes HCL inherently reliable is reduction of inrush fault currents. Without inrush fault currents, the currents flowing under such conditions can be limited to a desired-value within one cycle. Inrush fault current depends on saturation, normal spot propagation velocity, turns ratio and the fault angle.

  • PDF

고조파 성분을 고려한 유도형 고온초전도한류기의 동작 특성 해석 (The Analysis of Operational Characteristics of Inductive High-Tc Superconducting Fault Current Limiter Concerning Harmonic Component)

  • 임도현;주민석;추용;김한준;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.131-133
    • /
    • 1995
  • Inductive high-Tc superconducting fault current limiter using YBCO superconducting ring in the secondary part has many advantages in power networks. It is based on the superconducting to normal transition and this paper describes its operational characteristics and experimental results, especially focused on the harmonic component analysis and recovery time. We fabricated and tested it under various conditions for the analysis of transient fault characteristics. And for the analysis of harmonics we used FFT methods. The superconducting ring was quenched in 240Arms and fault current was effectively limited to the lower current level. In addition, it was fast recovered when the fault condition was removed and after fault the system had odd harmonics.

  • PDF

Fault Current Limiting Characteristics of Flux-lock Type SFCL with Several Secondary Windings

  • Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.193-197
    • /
    • 2005
  • We investigated fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL), which consisted of a primary winding and several secondary windings connected in series between $high-T_C$ superconducting (HTSC) thin films. Each YBCO thin film has a 2 mm wide and 42 cm long meander line with 14 stripes of different length. The power imbalance due to the slight difference of Ie between YBCO current limiting elements causes the significant power burden on YBCO element with lower $I_C$. We confirmed from our experiments that the mutual coupling between the primary winding and secondary windings of the flux-lock type SFCL reduced the power imbalance between YBCO current limiting elements compared with the resistive type SFCL connected in series.

YBCO Coated Conductor를 이용한 저항형 전류제한기의 인가전압 증가에 따른 전류제한 특성 (Current Limiting Characteristics according to Applied Voltage Increase of Resistive-type SFCL using YBCO Coated Conductor)

  • 두호익;김민주;두승규;김용진;이동혁;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.854-859
    • /
    • 2009
  • The YBCO coated conductor is an important element that forms the superconducting power equipment. The first advantage of applying YBCO coated conductor to superconducting power equipment is that it can effectively addresses the normal and fault currents using less quantity of wire than when using Bi tape due to its high critical current density. Second, it can limit the fault current fast because its index value is high. so that the resistance can be produced fast when it is applied to the superconducting current limiting element. Third, the type of stabilization layer that surrounds the YBCO superconductor is selectable and the magnitude of the resistance that is produced from quenching can be adjusted. This study researched into the manufacture of current-limiting element of using YBCO coated conductor, into the characteristics of current limiter that considered by combining the manufactured element with the resistive-type superconducting fault current limiter.

고온 초전도선재를 이용한 사고 전류 제한 장치의 개념 설계 및 효용 평가 (The Conceptual Design and Estimate of Fault Current Limiter Using High-Tc superconducting Tape)

  • 이승제;이찬주;장미혜;김태중;현옥배;고태국
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.134-137
    • /
    • 1999
  • It is certain that the power quality will be very important at 21 century. Especially instant power shortage or power fault will occur serious problems. Accordingly stable power supplication is very technical problem. There are many way to make stable supplication as auxiliary generator, but this is long time delay complement. To solve this problem the superconducting magnetic energy storage is introduced. High Tc superconductor is more commercial.

  • PDF

초전도 한류기 투입저항 변화에 따른 여자돌입전류 저감률 분석 (Analysis of Inrush Current Reduction Rate According to Insertion Resistance of the Superconducting Fault Current Limiter)

  • 박세호;서훈철;이상봉;김철환;김재철;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.257-258
    • /
    • 2008
  • The inrush current of a transformer is a high-magnitude and harmonic-rich current generated when the transformer core is driven into saturation during energizing. The inrush current usually leads to undesirable effects, for example potential damage to the transformer, misoperation of a protective relay, and power quality deterioration in the distribution power system. Inrush current reduction is therefore important for power system operation. In this paper, to reduce the inrush current, the insertion resistance of the Superconducting Fault Current Limiter (SFCL) that is connected in series with the transformer in the distribution system is used. This paper implements the SFCL by using the Electromagnetic Transient Program-Restructured Version (EMTP-RV) to model the SFCL in the distribution system. The simulation results show the beneficial effects of the SFCL for reduction of the inrush current.

  • PDF

고온초전도 한류기의 절연설계를 위한 과냉각 액체질소의 절연내력 특성 (Dielectric Characteristics of Subcooled $LN_2$ for Insulation Design of HTS Fault Current Limiters)

  • 백승명;정종만;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.46-50
    • /
    • 2003
  • In the dielectric insulation design of any high temperature superconducting (HTS) apparatus as well as HTS fault current limiter in the electrical power systems, the breakdown characteristics of cryogenic coolants such as liquid nitrogen ($LN_2$) are an important factor of the insulating engineering. Previous reports concerned with the breakdown characteristics of liquid nitrogen have pointed out that bubbles and gaseous nitrogen have a treat influence on their breakdown phenomena, However, useful data for practical insulation design of HTS fault CUITent limiter operating at subcooled L$N_2$ have not been obtained enough. Therefore, this paper presents an experimental investigate of breakdown phenomena in liquid nitrogen under AC voltage, And, we observed the breakdown voltage (BDV) of liquid nitrogen with lowering temperature. The Weibull plots of the breakdown voltage of subcooled $LN_2$ for the needle-plane electrode with d= 10 mm are studied, The dependence of breakdown voltage for needle-plane and pancake coil-pancake coil electrode on temperature is illustrated, The relationship between the AC breakdown characteristics and the temperature were clarified.