• 제목/요약/키워드: High Harmonic Rejection

검색결과 18건 처리시간 0.021초

A Highly Efficient Rectenna Using Harmonic Rejection Capability

  • Kim, Youg-Hwan;Lim, Sung-Joon
    • Journal of electromagnetic engineering and science
    • /
    • 제11권4호
    • /
    • pp.257-261
    • /
    • 2011
  • A highly efficient 2.4 GHz rectenna is designed using a harmonic rejection bandpass filter. The rectenna is printed on Rogers Duroid 5880 substrate with ${\varepsilon}_r$=2.2 and a thickness of 1.6 mm. The rectenna consists of a microstrip antenna and high order harmonic rejection bandpass filter, microstrip lowpass filter, and Schottky barrier diode (HSMS2820). The use of a $2^{nd}$ and $3^{rd}$ harmonic rejection microstrip bandpass filter in the rectenna results in high conversion efficiency. The proposed rectenna achieves a RF to DC conversion efficiency of 72.17 % when the received RF power is 63.09 mW.

A High Gain and High Harmonic Rejection LNA Using High Q Series Resonance Technique for SDR Receiver

  • Kim, Byungjoon;Kim, Duksoo;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • 제14권2호
    • /
    • pp.47-53
    • /
    • 2014
  • This paper presents a high gain and high harmonic rejection low-noise amplifier (LNA) for software-defined radio receiver. This LNA exploits the high quality factor (Q) series resonance technique. High Q series resonance can amplify the in-band signal voltage and attenuate the out-band signals. This is achieved by a source impedance transformation. This technique does not consume power and can easily support multiband operation. The chip is fabricated in a $0.13-{\mu}m$ CMOS. It supports four bands (640, 710, 830, and 1,070MHz). The measured forward gain ($S_{21}$) is between 12.1 and 17.4 dB and the noise figure is between 2.7 and 3.3 dB. The IIP3 measures between -5.7 and -10.8 dBm, and the third harmonic rejection ratios are more than 30 dB. The LNA consumes 9.6 mW from a 1.2-V supply.

A Co-design Study of Filters and Oscillator for Low Phase Noise and High Harmonic Rejection

  • Zhang, Bing;Zhang, Wenmei;Ma, Runbo;Zhang, Xiaowei;Mao, Junfa
    • ETRI Journal
    • /
    • 제30권2호
    • /
    • pp.344-346
    • /
    • 2008
  • In this paper, we present a novel oscillator (OSC) design. Bandpass filters, which can suppress harmonics, are incorporated into a co-design with an OSC to improve the OSC phase noise and harmonic rejection. The proposed OSC/bandpass filter co-design achieves a phase noise of -130.1 dBc/Hz/600 kHz and harmonic rejection of 37.94 dB and 40.85 dB for the second and third harmonics, respectively, as compared to results achieved by the OSC before co-design of -101.6 dBc/Hz/600 kHz and 21.28 dB and 19.68 dB. Good agreement between the measured and simulated results is achieved.

  • PDF

전압제어 유전체공진을 이용한 K-대역 발진기 설계에 관한 연구 (A study on the design of a K-band harmonic oscillator using voltage controlled dielectric resonance)

  • 전순익;김성철;은도현;차균현
    • 한국통신학회논문지
    • /
    • 제21권12호
    • /
    • pp.3215-3226
    • /
    • 1996
  • In this paper a K-band harmonic oscillator competitive to ordinary Push-Push type oscillators is introduced. This oscillator is composed of two-X-band dielectric resonance circuits. To favor its harmonic generation, the load effect and the bias effect are studied to allow the maximum harmonic distortion. As results, the dielectric resonated load and the class A bias are used for the 2nd harmonic generation. analytical study for modelling of voltage controlled dielectric resonator is carried out with theoretical background. The performance of the circuit is evaluated by simulation using harmonic balanced method. The novel structure has ont only a voltage tuning circuit but also an output port at fundamental frequency as the function of prescaler for phase lockede loop application on the just single oscillation structure. In experimentation, the output freqneyc of the 2nd harmonic signal is 20.5GHz and the maximum power level of output is +5.5dBm without additional post amplifiers. the harmonic oscillator exhibits -30dBc of high fundamental frequency rejection without added extra filters. The phase noise of -90dBc/Hz at 100kHz off-carrier has been achieved under free running condition, that satisfies phase noise requirement of IESS 308. The proposed oscillator may be utilized as the clean and stable fixed local oscillator in Transmit Block Upconvertor(TBU) or Low oise Block downconvertor(LNB) for K/Ka-band digital communications and satellite broadcastings.

  • PDF

최적화된 DGS 회로를 이용한 IMT-2000용 Class-AB 대전력증폭기의 설계 및 구현 (Design and Implementation of Class-AB High Power Amplifier for IMT-2000 System using Optimized Defected Ground Structure)

  • 강병권;차용성;김선형;박준석
    • 융합신호처리학회논문지
    • /
    • 제4권1호
    • /
    • pp.41-48
    • /
    • 2003
  • 본 논문에서는 DGS(Defected Ground Structure)에 대한 새로운 등가 회로를 제안하였으며, 이를 IMT-2000용 AB급 대전력 증폭기 설계에 적용하여 증폭기의 성능을 향상시켰다. 새로운 DGS 등가 회로는 병렬의 LC 공진기와 병렬 형태의 캐패시턴스로 구성되어 금속 접지면에 에칭된 결함으로 인한 프린징(fringing) 효과를 반영하도록 하였으며, 전력 증폭기 출 단 정합 회로를 최적화하기 위하여 사용되었다. 이전의 논문에서도 하모닉 성분의 억제와 증폭기의 효율 개선을 위하여 DGS를 사용하였으나 DGS 등가 회로의 해석은 없었으며(1), 본 논문에서는 이를 개선하여 회로 시뮬레이션을 통한 정한 DGS의 등가 회로를 AB급 증폭기의 출력 단 정합회로에 적용함으로써 성능 향상과 함께 증폭기 제작 후에 튜닝이 거의 필요없는 정확한 설계 방법을 제시하였다. 이와 같이 제안된 전력 증폭기의 설계 방법은 정확한 설계 결과를 제공함으로써 최적 부하 조건과 하모닉 성분의 제거 성능을 동시에 만족시킬 수 있었다. 제안된 방법의 효과를 입증하기 위하여 DGS를 적용한 기존의 방법과 새로이 제안된 방법을 사용하여 20W급의 전력 증폭기를 설계 및 제작하였으며, 그 측정 결과를 비교하였다.

  • PDF

Current Harmonics Rejection and Improvement of Inverter-Side Current Control for the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1672-1682
    • /
    • 2017
  • For grid-connected LCL-filtered inverters, the inverter-side current can be used as the control object with one current sensor for both LCL resonance damping and over-current protection, while the grid-voltage feedforward or harmonic resonant compensator is used for suppressing low-order grid current harmonics. However, it was found that the grid current harmonics were high and often beyond the standard limitations with this control. The limitations of the inverter-side current control in suppressing low-order grid current harmonics are analyzed through inverter output impedance modeling. No matter which compensator is used, the maximum magnitudes of the inverter output impedance at lower frequencies are closely related to the LCL parameters and are decreased by increasing the control delay. Then, to improve the grid current quality without complicating the control or design, this study proposes designing the filter capacitance considering the current harmonic constraint and using a PWM mode with a short control delay. Test results have confirmed the limitation and verified the performance of the improved approaches.

Compact Multi-harmonic Suppression LTCC Bandpass Filter Using Parallel Short-Ended Coupled-Line Structure

  • Wang, Xu-Guang;Yun, Young;Kang, In-Ho
    • ETRI Journal
    • /
    • 제31권3호
    • /
    • pp.254-262
    • /
    • 2009
  • This paper presents a novel simple filter design method based on a parallel short-ended coupled-line structure with capacitive loading for size reduction and ultra-broad rejection of spurious passbands. In addition, the introduction of a cross-coupling capacitor into the miniaturized coupled-line can create a transmission zero at the second harmonic frequency for better frequency selectivity and attenuation level. The aperture compensation technique is also applied to achieve a strong coupling in the coupled-line section. The influence of using the connecting transmission line to cascade two identical one-stage filters is studied for the first time. Specifically, such a two-stage bandpass filter operating at 2.3 GHz with a fractional bandwidth of 10% was designed and realized with low-temperature co-fired ceramic technology for application in base stations that need high power handling capability. It achieved attenuation in excess of -40 dB up to $4f_0$ and low insertion loss of -1.2 dB with the size of 10 mm ${\times}$ 7 mm ${\times}$ 2.2 mm. The measured and simulated results showed good agreement.

평행 결합 Mushroom 구조를 이용한 대역 통과 여파기의 고조파 성분 억제 (Suppression of Harmonic Passband of Bandpass Filters(BPFs) Using Parallel-Coupled Mushroom Structure)

  • 이재곤;이정해
    • 한국전자파학회논문지
    • /
    • 제18권2호
    • /
    • pp.118-125
    • /
    • 2007
  • 본 논문에서는 평행 결합 버섯 구조를 이용하여 대역 통과 필터의 고조파 성분을 제거하였다. Double positive(DPS)전송 선로인 마이크로스트립 라인과double negative(DNG)전송 선로인 버섯 구조 사이에서는 격리된 마이크로스트립 라인과 버섯 구조의 교차되는 분산 곡선 주파수 대역에서 강한 결합이 복소 전파 상수로 인해서 발생한다. 교차되는 분산 곡선 주파수에서 강한 결합으로 인하여 전파가 전파를 하지 못하기 때문에 이와 같은 구조는 대역 저지 필터로 이용할 수 있는 것이다. 제안된 대역 저지 필터는 공진기를 이용한 형태가 아니라 평행 결합 전송 선로를 이용하였기 때문에 넓은 대역폭을 가지고 DPS와 DNG 전송 선로 사이의 강한 결합으로 인해서 소형화에 유리하다는 장점을 가지고 있다. 본 논문에서는 중심 주파수 4 GHz, 3 dB fractional 대역폭은 40%인 평행 결합 대역 저지 필터를 설계하였고, 이를 두 가지 종류의 대역 통과 필터의 고조파 모드를 억제하는데 이용하였다.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • 제13권5호
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.