Journal of the Korean Association of Geographic Information Studies
/
v.22
no.3
/
pp.133-145
/
2019
Building and researching high definition maps that support autonomous vehicles, one of Korea's key challenges for the future, are being actively propelled in both private and government sectors with the goal of fast commercialization. Under this perspective, update methods that secure up-to-date information are emerging as key tasks. To provide a plan for establishing efficient renewal systems for high definition maps, we analyzed the present condition of road types, causes of road changes and its annual change rates, and examined where and how such road change information is managed. Furthermore, the method of collection and detection of road change information and the renewal system of high definition maps are defined based on the current study. At the end of the paper, a step-by-step renewal system is proposed through the examination of renewal cycles, contents, and region of high definition maps.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.6
/
pp.363-369
/
2021
High-definition road maps are used as the basic infrastructure for autonomous vehicles, so the latest road information must be quickly reflected. However, the current drawing and structural editing process of high-definition road maps are manually performed. In addition, it takes the longest time to generate road lanes, which are the main construction targets. In this study, the point cloud of the road lane markings, in which color types(white, blue, and yellow) were predicted through the PointNet model pre-trained in previous studies, were used as input data. Based on the point cloud, this study proposed a methodology for automatically drawing and structural editing of the layer of road lane markings. To verify the usability of the 3D vector data constructed through the proposed methodology, the accuracy was analyzed according to the quality inspection criteria of high-definition road maps. In the positional accuracy test of the vector data, the RMSE (Root Mean Square Error) for horizontal and vertical errors were within 0.1m to verify suitability. In the structural editing accuracy test of the vector data, the structural editing accuracy of the road lane markings type and kind were 88.235%, respectively, and the usability was verified. Therefore, it was found that the methodology proposed in this study can efficiently construct vector data of road lanes for high-definition road maps.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.3
/
pp.133-139
/
2021
Currently, the process of constructing a high-definition road map has a high proportion of manual labor, so there are limitations in construction time and cost. Research to automate map production with high-definition road maps using artificial intelligence is being actively conducted, but since the construction of training data for the map construction is also done manually, there is a need to automatically build training data. Therefore, in this study, after converting to images using point clouds acquired by a mobile mapping system, the road marking areas were extracted through image reclassification and overlap analysis using thresholds. Then, a methodology was proposed to automatically construct training data for deep learning data for the high-definition road map through the classification of the polygon types in the extracted regions. As a result of training 2,764 lane data constructed through the proposed methodology on a deep learning-based PointNet model, the training accuracy was 99.977%, and as a result of predicting the lanes of three color types using the trained model, the accuracy was 99.566%. Therefore, it was found that the methodology proposed in this study can efficiently produce training data for high-definition road maps, and it is believed that the map production process of road markings can also be automated.
Oh, Yoon Seuk;Kwon, Young Sam;Park, Il Suk;Hong, Seung Hwan;Lee, Ha Jun;Lee, Tae Kyeong;Chang, Soo Young
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.4
/
pp.383-390
/
2020
Car-mounted MMS (Mobile Mapping System) is the most effective tool for mapping of high definition road maps(HD Map). The MMS is composed of various sensor combinations, and the manufacturing methods and processing software are different for each manufacturer, performance cannot be predicted only by the specifications of the parts. Therefore, it is necessary to judge whether each equipment is suitable for mapping through performance evaluation, and facilities for periodic performance evaluation. In this paper, we explained the MMS performance evaluation facilities built at the SOC Evaluation Research Center of Korea Institute of Civil Engineering and Building Technology and analyzed the conditions that the evaluation facilities should have through a literature survey and field tests.
Unlike a typical small-sized robot navigating in a free space, an autonomous vehicle has to travel in a designated road which has lanes to follow and traffic rules to obey. High-Definition (HD) maps, which include road markings, traffic signs, and traffic lights with high location accuracy, can help an autonomous vehicle avoid the need to detect such challenging road surroundings. With space constraints and a pre-built HD map, a new type of path planning algorithm can be conceived as a substitute for conventional grid-based path planning algorithms, which require substantial planning time to cover large-scale free space. In this paper, we propose an obstacle-avoiding, cost-based planning algorithm in a continuous space that aims to pursue a globally-planned path with the help of HD map information. Experimentally, the proposed algorithm is shown to outperform other state-of-the-art path planning algorithms in terms of computation complexity in a typical urban road setting, thereby achieving real-time performance and safe avoidance of obstacles.
In recent years, automated vehicles have garnered attention in the multidisciplinary research field, promising increased safety on the road and new opportunities for passengers. High-Definition (HD) maps have been in development for many years as they offer roadmaps with inch-perfect accuracy and high environmental fidelity, containing precise information about pedestrian crossings, traffic lights/signs, barriers, and more. Demonstrating autonomous driving requires verification of driving on actual roads, but this can be challenging, time-consuming, and costly. To overcome these obstacles, creating HD maps of real roads in a simulation and conducting virtual driving has become an alternative solution. However, existing HD maps using high-precision data are expensive and time-consuming to build, which limits their verification in various environments and on different roads. Thus, it is challenging to demonstrate autonomous driving on anything other than extremely limited roads and environments. In this paper, we propose a new and simple method for implementing HD maps that are more accessible for autonomous driving demonstrations. Our HD map combines the CARLA simulator and OpenStreetMap (OSM) data, which are both open-source, allowing for the creation of HD maps containing high-accuracy road information globally with minimal dependence. Our results show that our easily accessible HD map has an accuracy of 98.28% for longitudinal length on straight roads and 98.42% on curved roads. Moreover, the accuracy for the lateral direction for the road width represented 100% compared to the manual method reflected with the exact road data. The proposed method can contribute to the advancement of autonomous driving and enable its demonstration in diverse environments and on various roads.
Journal of the Korean Association of Geographic Information Studies
/
v.24
no.2
/
pp.102-116
/
2021
For the safe operation of autonomous vehicles, the representative technology of the 4th industrial revolution era, a combination of various technologies such as sensor technology, software technology and car technology is required. An autonomous vehicle is a vehicle that recognizes current location and situation by using the various sensors, and makes its own decisions without depending on the driver. Perfect recognition technology is required for fully autonomous driving. Since the precise road maps provide various road information including lanes, stop lines, traffic lights and crosswalks, it is possible to minimize the cognitive errors that occur in autonomous vehicles by using the precise road maps with location information of the road facilities. In this study, the definition, necessity and technical trends of the precise road map have been analyzed, and the HD(High Definition) map prototype based on the web GIS has been built in the autonomous driving-specialized areas of Daegu Metropolitan City(Suseong Medical District, about 24km), the Happy City of Sejong Special Self-Governing City(about 33km), and the FMTC(Future Mobility Technical Center) PG(Proving Ground) of Seoul National University Siheung Campus using the MMS(Mobile Mapping System) surveying results given by the National Geographic Information Institute. In future research, the built-in precise road map service will be installed in the autonomous vehicles and control systems to verify the real-time locations and its location correction algorithm.
Oh, Jong Min;Song, Yong Hyun;Hong, Song Pyo;Shin, Young Min;Ko, Young Chin
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.4
/
pp.375-382
/
2020
As the 4th Industrial Revolution era in worldwide, interest in autonomous vehicles is increasing. but due to recent safety issues such as pedestrian accidents and car accidents, as a technical model for this, the demand for 3D HD maps (High Definition maps) is increasing in including lanes, road markings, road information, traffic lights and traffic signs etc. However, since some complementary points have been continuously raised according to demand, It is necessary to collect the opinions of institutions and companies utilizing HD maps and to improve HD maps. This study was conducted by utilizing the results of the contest for usability verification of HD Maps hosted by the National Geographic Information Institute and organized by the Spatial Information Industry Promotion Institute. For this study, we researched HD maps' layers and codes for HD maps object usability to improve HD maps, constructed HD maps object usability items accordingly, and contested usability verification of HD maps according to the items The contestants conducted verification and analyzed the results. As a result, the most frequently used code for each layer was the flat intersection, and the code showing the highest usage rate was a safety sign. In addition, the use rate of the sub-section and height obstacles was 16.67% and 8.88%, respectively, showing a low ratio. In order to utilize HD maps in the future, this study is expected to require research to continuously collect opinions from customers and improve data objects and data models that are actually needed by customers.
Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.8
/
pp.1996-2015
/
2023
High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.
It is necessary to develop a next generation location referencing method with higher accuracy as advanced technologies such as autonomous vehicles require higher accuracy of location data. Thus, we proposed a framework for a lane-level location referencing method (L-LRM) based on high-precision digital road network map, and developed a tool which is capable of analyzing and evaluating the proposed method. Firstly, the necessity and definition of location referencing method was presented, followed by the proposal of an L-LRM framework with a fundamental structure of high-precision digital road network map for the method. Secondly, an architecture of the analysis and evaluation tool was described and then the Windows application program was developed using C/C++ programming language. Finally, we demonstrated the performance of the proposed framework and the application program using two different high precision digital maps with randomly generated road event data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.