• Title/Summary/Keyword: High Ambient Temperature

Search Result 775, Processing Time 0.034 seconds

Combined Effect of CO2 andTemperature on Wheat Powdery Mildew Development

  • Matic, Slavica;Cucu, Maria Alexandra;Garibaldi, Angelo;Gullino, Maria Lodovica
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.316-326
    • /
    • 2018
  • The effect of simulated climate changes by applying different temperatures and $CO_2$ levels was investigated in the Blumeria graminis f. sp. tritici/wheat pathosystem. Healthy and inoculated plants were exposed in single phytotrons to six $CO_2$+temperature combinations: (1) 450 ppm $CO_2/18-22^{\circ}C$ (ambient $CO_2$ and low temperature), (2) 850 ppm $CO_2/18-22^{\circ}C$ (elevated $CO_2$ and low temperature), (3) 450 ppm $CO_2/22-26^{\circ}C$ (ambient $CO_2$ and medium temperature), (4) 850 ppm $CO_2/22-26^{\circ}C$ (elevated $CO_2$ and medium temperature), (5) 450 ppm $CO_2/26-30^{\circ}C$ (ambient $CO_2$ and high temperature), and (6) 850 ppm $CO_2/26-30^{\circ}C$ (elevated $CO_2$ and high temperature). Powdery mildew disease index, fungal DNA quantity, plant death incidence, plant expression of pathogenesis-related (PR) genes, plant growth parameters, carbohydrate and chlorophyll content were evaluated. Both $CO_2$ and temperature, and their interaction significantly influenced powdery mildew development. The most advantageous conditions for the progress of powdery mildew on wheat were low temperature and ambient $CO_2$. High temperatures inhibited pathogen growth independent of $CO_2$ conditions, and no typical powdery mildew symptoms were observed. Elevated $CO_2$ did not stimulate powdery mildew development, but was detrimental for plant vitality. Similar abundance of three PR transcripts was found, and the level of their expression was different between six phytotron conditions. Real time PCR quantification of Bgt was in line with the disease index results, but this technique succeeded to detect the pathogen also in asymptomatic plants. Overall, future global warming scenarios may limit the development of powdery mildew on wheat in Mediterranean area, unless the pathogen will adapt to higher temperatures.

DILUTION AND SHORT-TERM STORAGE OF COCK SPERMATOZOA BY INHIBITION OF MOTILITY WITH FRUCTOSE AT AMBIENT TEMPERATURE

  • Mohan, J.;Moudgal, R.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.705-709
    • /
    • 1996
  • A simplified dilutor for cock spermatozoa at ambient temperature was achieved by adjusting the 5% concentration of fructose in isotonic saline. Motility of cock spermatozoa was arrested completely for maximum 6 hrs without affection the survivability of spermatozoa by employing this sugar. To study the effect of high concentration of fructose on fertility, sperm were inseminated with or without fructose at different hrs. Fructose from semen samples was removed by centrifugation. High fertility obtained in the hens inseminated with fructose free sperm (washed). In addition, washed sperm maintained the 85.00% fertility for 6 hrs in winter season ($17-21^{\circ}C$) and 82.67% fertility for 3 hrs in summer season ($31-35^{\circ}C$). Whereas control groups showed 47.33 and 25.33% fertility in winter and summer season respectively. No significant difference was found in percent motility and live counts between the control and washed experimental groups during winter season. However, these measures differed significantly in summer. Washing of cock spermatozoa more than once, high speed centrifugation and more duration for centrifugation proved harmful to fertility. It may be concluded that fructose (5%) can be used as a motility or metabolic inhibitor of spermatozoa for short-term storage of cock semen at ambient temperatures.

Numerical Simulation of Orifice Injection Characteristics of High Temperature Aviation Fuel (고온 항공유의 오리피스 인젝터 분사특성 수치해석)

  • Sung-rok Hwang;Hyung Ju Lee
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.89-96
    • /
    • 2023
  • This study presents a numerical simulation investigating hydrodynamic characteristics of high-temperature hydrocarbon aviation fuel injected through a plain orifice injector. The analysis encompassed the temperature range up to the critical point, and the obtained results were compared with prior experimental observations. The analysis unveiled that the injector's exit pressure remains equivalent to the ambient pressure when the fuel injection temperature is below the boiling point. However, when the fuel temperature surpasses the boiling point, the exit pressure of the injector transitions to the saturated vapor pressure corresponding to the fuel injection temperature. Consequently, the exit pressure of the injector increases in tandem with the rapid increase of the saturation vapor pressure due to escalating fuel temperatures. This rise in the exit pressure necessitates a proportional increase in fuel injection pressure to ensure a fixed fuel mass flow rate. Furthermore, the investigation revealed that the discharge coefficient obtained by applying the exit pressure instead of the ambient pressure did exhibit no decrease, but rather was maintained at a nearly constant value, comparable to its level below the boiling point.

Sprouting and Component Change of Cheju-Grown Onions after $\gamma$-ray Irradiation ($\gamma$-ray 조사에 의한 제주산 양파의 발아 및 성분변화)

  • 박용봉;김재하;김기택
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.230-236
    • /
    • 2000
  • For extension of storability, onion bulbs produced in Cheju Island were exposed to ${\gamma}$-ray irradiation at a dosage of 0, 3, or 6Krad and stored in a natural cavern, or in low (2$^{\circ}C$) or ambient temperature storage condition. Sprouting began from approximately five months in storage, regardless of storage condition, and increased as the storage period increased. From early August, sprouting as high as 50% occurred in the natural storage cavern, and 20% in ambient temperature storage when bulbs were treated with 0 krad ${\gamma}$-ray. However, bulbs treated with 3 or 6krad ${\gamma}$-ray did not any sprouting until six months in storage. No significant weight loss was observed in all treatments until sprouting occurred from 40 days after the initiation of storage. Weight loss, however, increased remarkably after 40 days in storage, indicating that it was closely related to sprouting during storage. Bulbs stored at 2$^{\circ}C$ showed 5~10% rot, but were still edible. Percent rot reached to as high as 50% in bulbs unirradiated and stored at ambient temperatures after seven months, while it in irradiated bulbs reached to 5, 33, and 30% at 2$^{\circ}C$, in a natural cavern, and ambient temperatures, respectively. Sugar contents slightly increased in irradiated bulbs in the later storage period under ambient temperatures, while sugar contents in irradiated bulbs in the later storage period under ambient temperatures, while sugar contents in Allium vegetables generally decrease in later storage if unirradiated. Sulfur content slightly increased in irradiated bulbs in the early storage period and decreased gradually in all treatments in the later storage stage.

  • PDF

Performance Test of a Small Simulated High-Altitude Test Facility for a Gas-turbine Combustor (가스터빈 저온/저압 점화장치 구성 및 운영조건 확인 시험)

  • Kim, Tae-Woan;Lee, Yang-Suk;Ko, Young-Sung;Lim, Byeung-Jun;Kim, Hyeong-Mo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.153-156
    • /
    • 2008
  • Ignition and combustion performance of a gas-turbine engine were changed by various high-altitude condition. A goal of this study is to make the small test facility to simulate high-altitude condition. To perform the low pressure condition, a diffuser was used in various diffuser front of primary nozzle pressure. To perform the low temperature, heat exchanger was used in various mixture ratio of cryogenic air and ambient temperature air. The experimental result shows that high-altitude conditions can be controled by diffuser front of primary nozzle pressure and mixture ratio of cryogenic air and ambient temperature air.

  • PDF

Designs and Tests for the Vibration Control of Full-Scale Steel Frame Structure with Added Viscoelastic Dampers (실 구조물 진동제어를 위한 점탄성 댐퍼 설계 및 적용 실험)

  • Jeoung, Jeoung-Kyo;Kim, Doo-Hoon;Kim, Young-Chan;Park, Jin-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.687-692
    • /
    • 2002
  • In order to verify the effectiveness of adding visooelastic dampers to full-scale steel frame structure on the reduction of their seismic and wind response a experimental work was carried out. First, The test was conducted on the VE dampers subjected to sinusoidal excitations under a variety of ambient temperatures, frequency, and the damper strain. Results from these tests showed that the viscoelastic dampers have high energy dissipation capacity. Second, The vibration tests was conducted of the full-scale steel frame structure with md without added VE dampers at different temperatures. Viscoelastically damped full-scale structure test result on the effect of ambient temperature show that viscoelastic dampers are very effective in reducing excessive vibration of the structure due to sinusoidal excitation over a wide ringe of ambient temperature.

  • PDF

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

Comparison of Strength-Maturity Models Accounting for Hydration Heat in Massive Walls

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Cho, Myung-Sug
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • The objective of this study was to evaluate the capability of different strength-maturity models to account for the effect of the hydration heat on the in-place strength development of high-strength concrete specifically developed for nuclear facility structures under various ambient curing temperatures. To simulate the primary containment-vessel of a nuclear reactor, three 1200-mm-thick wall specimens were prepared and stored under isothermal conditions of approximately $5^{\circ}C$ (cold temperature), $20^{\circ}C$ (reference temperature), and $35^{\circ}C$ (hot temperature). The in situ compressive strengths of the mock-up walls were measured using cores drilled from the walls and compared with strengths estimated from various strength-maturity models considering the internal temperature rise owing to the hydration heat. The test results showed the initial apparent activation energies at the hardening phase were approximately 2 times higher than the apparent activation energies until the final setting. The differences between core strengths and field-cured cylinder strengths became more notable at early ages and with the decrease in the ambient curing temperature. The strength-maturity model proposed by Yang provides better reliability in estimating in situ strength of concrete than that of Kim et al. and Pinto and Schindler.

Effects of elevated CO2 concentration and temperature on growth and production of Oryza sativa L. cv. Ilmi, one of the main rice varieties in Korea

  • Lee, Eung-Pill;Park, Jae-Hoon;Jang, Rae-Ha;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • This research was conducted to examine the changes in growth and production of Oryza sativa L. cv. Ilmi, which was developed to cultivate high yielding rice variety in the Southern plains of Korea. The seedlings of the rice were cultivated from May to October in 2012 under three different conditions: control, AC-AT, ambient $CO_2$ + ambient temperature; AC-ET, ambient $CO_2$ + elevated temperature; EC-ET, elevated $CO_2$ + elevated temperature. The aboveground biomass, belowground biomass, the total biomass of the rice, and panicle weight per individual were the heaviest in the EC-ET. But, the number of grains per panicle and the weight of one grain was higher at the condition of AC-ET and EC-ET than that of AC-AT. The number of tiller was higher at the condition of AC-AT and AC-ET than that of EC-ET. However, there was no significant difference in the number of panicles per individual and the ripened grain rate among the control and global warming treatments. Crop yield was the highest in the EC-ET. This result means that the global warming condition should be considered in the selection of suitable paddy field for the limibyeo in the future.

The Determination of Temperature and Humidity Sensitivity Coefficients of Torque Transducers using Seasonal Climatic Changes of Ambient Conditions in the Laboratory (계절에 따른 실험실 환경변화를 이용한 토크측정기의 온도 및 습도 감도계수 결정)

  • Derebew, Mulugeta;Kim, Min Seok;Park, Yon Kyu;Lee, Ho Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.185-190
    • /
    • 2015
  • This paper presents a new method to determine sensitivity coefficients of temperature and humidity of torque transducers by using a natural and seasonal variation of ambient conditions at the laboratory. We had measured the sensitivities of the torque transducers over almost one year using the KRISS 2 kN m torque standard machine. The sensitivity data acquired at various ambient conditions were processed using our measurement model to extract the sensitivity coefficients of temperature and humidity simultaneously with high precision. A comparison with a previous method using an environmental control chamber was carried out to test the feasibility of using our new method. Two results agreed within the uncertainty. We revealed that the torque measuring errors could be 8 times higher than the measurement and calibration capability of KRISS torque standard machine if the sensitivity changes due to the temperature and humidity are not properly corrected during a calibration.