DOI QR코드

DOI QR Code

Combined Effect of CO2 andTemperature on Wheat Powdery Mildew Development

  • Matic, Slavica (AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Universita di Torino) ;
  • Cucu, Maria Alexandra (AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Universita di Torino) ;
  • Garibaldi, Angelo (AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Universita di Torino) ;
  • Gullino, Maria Lodovica (AGROINNOVA - Centre of Competence for the Innovation in the Agro-environmental Sector, Universita di Torino)
  • Received : 2017.11.03
  • Accepted : 2018.03.16
  • Published : 2018.08.01

Abstract

The effect of simulated climate changes by applying different temperatures and $CO_2$ levels was investigated in the Blumeria graminis f. sp. tritici/wheat pathosystem. Healthy and inoculated plants were exposed in single phytotrons to six $CO_2$+temperature combinations: (1) 450 ppm $CO_2/18-22^{\circ}C$ (ambient $CO_2$ and low temperature), (2) 850 ppm $CO_2/18-22^{\circ}C$ (elevated $CO_2$ and low temperature), (3) 450 ppm $CO_2/22-26^{\circ}C$ (ambient $CO_2$ and medium temperature), (4) 850 ppm $CO_2/22-26^{\circ}C$ (elevated $CO_2$ and medium temperature), (5) 450 ppm $CO_2/26-30^{\circ}C$ (ambient $CO_2$ and high temperature), and (6) 850 ppm $CO_2/26-30^{\circ}C$ (elevated $CO_2$ and high temperature). Powdery mildew disease index, fungal DNA quantity, plant death incidence, plant expression of pathogenesis-related (PR) genes, plant growth parameters, carbohydrate and chlorophyll content were evaluated. Both $CO_2$ and temperature, and their interaction significantly influenced powdery mildew development. The most advantageous conditions for the progress of powdery mildew on wheat were low temperature and ambient $CO_2$. High temperatures inhibited pathogen growth independent of $CO_2$ conditions, and no typical powdery mildew symptoms were observed. Elevated $CO_2$ did not stimulate powdery mildew development, but was detrimental for plant vitality. Similar abundance of three PR transcripts was found, and the level of their expression was different between six phytotron conditions. Real time PCR quantification of Bgt was in line with the disease index results, but this technique succeeded to detect the pathogen also in asymptomatic plants. Overall, future global warming scenarios may limit the development of powdery mildew on wheat in Mediterranean area, unless the pathogen will adapt to higher temperatures.

Keywords

References

  1. Batley, J. and Edwards, D. 2016. The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Curr. Opin. Plant Biol. 30:78-81. https://doi.org/10.1016/j.pbi.2016.02.002
  2. Bencze, S., Vida, G., Balla, K., Varga-Laszlo, E. and Veisz, O. 2013. Response of wheat fungal diseases to elevated atmospheric $CO_2$ Level. Cereal Res. Commun. 41:1-11. https://doi.org/10.1556/CRC.2012.0030
  3. Bencze, S., Komaromi, J., Vida, G., Puskas, K., Balla, K. and Veisz, O. 2015. Impact of elevated atmospheric $CO_2$ level on powdery mildew (Blumeria graminis f. sp. tritici) severity in wheat depends on the pathotype x genotype interaction. Procedia Environ. Sci. 29:232-233. https://doi.org/10.1016/j.proenv.2015.07.288
  4. Bennett, F. G. A. 1984. Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programmes. Plant Pathol. 33:279-300. https://doi.org/10.1111/j.1365-3059.1984.tb01324.x
  5. Bolouri Moghaddam, M. R. and Van den Ende, W. 2012. Sugars and plant innate immunity. J. Exp. Bot. 63:3989-3998. https://doi.org/10.1093/jxb/ers129
  6. Bowes, G. 1993. Facing the inevitable: plants and increasing atmospheric $CO_2$. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:309-332. https://doi.org/10.1146/annurev.pp.44.060193.001521
  7. Cao, X., Luo, Y., Zhou, Y., Fan, J., Xu, X., West, J. S., Duan, X. and Cheng, D. 2015. Detection of powdery mildew in two winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS One 10:e0121462. https://doi.org/10.1371/journal.pone.0121462
  8. Chakraborty, S., Murray, G. and White, N. 2002. Impact of climate change on important plant diseases in Australia. RIRDC Publication No W02/010, RIRDC Project No CST-4A. Rural Industries Research and Development Corporation.
  9. Chakraborty, S., Luck, J., Hollaway, G., Fitzgerald, G. and White, N. 2011. Rust-proofing wheat for a changing climate. Euphytica 179:19-32. https://doi.org/10.1007/s10681-010-0324-7
  10. Conner, R. L., Kuzyk, A. D. and Su, H. 2003. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can. J. Plant Sci. 83:725-728. https://doi.org/10.4141/P03-043
  11. Cowger, C., Miranda, L., Griffey, C., Hall, M., Murphy, J. P. and Maxwell, J. 2012. Wheat powdery mildew. In: Disease resistance in wheat, ed. by I. Sharma, pp. 84-119. CABI Publishing, Wallingford, United Kingdom.
  12. Farrakh, S., Wang, M. and Chen, X. 2016. Expression profling of pathogenesis-related protein genes in wheat resistance to the stripe rust pathogen (Puccinia striiformis f. sp. tritici). Phytopathology 106:S4.197.
  13. Fessler, C. and Kassemeyer, H. H. 1995. The infuence of temperature during the development of conidia on the germination of Uncinula necator. Vitis 34:63-64.
  14. Gilardi, G., Gisi, U., Garibaldi, A. and Gullino, M. L. 2017. Effect of elevated atmospheric $CO_2$ and temperature on the chemical and biological control of powdery mildew of zucchini and the Phoma leaf spot of leaf beet. Eur. J. Plant Pathol. 148:229-236. https://doi.org/10.1007/s10658-016-1078-4
  15. Giorgi, F. and Lionello, P. 2008. Climate change projections for the Mediterranean region. Glob. Planet. Change 63:90-104. https://doi.org/10.1016/j.gloplacha.2007.09.005
  16. Griffey, C. A., Das, M. K. and Stromberg, E. L. 1993. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis. 77:618-622. https://doi.org/10.1094/PD-77-0618
  17. Gullino, M. L., Pugliese, M., Paravicini, A., Casulli, E., Rettori, A., Sanna, M. and Garibaldi, A. 2011. New phytotron for studying the effect of climate change on plant pathogens. J. Ag. Eng. 42:1-11.
  18. Guo, H., Huang, L., Sun, Y., Guo, H. and Ge, F. 2016. The contrasting effects of elevated $CO_2$ on TYLCV infection of tomato genotypes with and without the resistance gene, Mi-1.2. Front. Plant Sci. 7:1680.
  19. Guzman-Plazola, R. A., Davis, R. M. and Marois, J. J. 2003. Effects of relative humidity and high temperature on spore germination and development of tomato powdery mildew (Leveillula taurica). Crop Prot. 22:1157-1168. https://doi.org/10.1016/S0261-2194(03)00157-1
  20. Hacquard, S., Kracher, B., Maekawa, T., Vernaldi, S., Schulze-Lefert, P. and Ver Loren van Themaat, E. 2013. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc. Natl. Acad. Sci. USA 110:E2219-E2228. https://doi.org/10.1073/pnas.1306807110
  21. Hatfield, J. L. and Prueger, J. H. 2015. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10:4-10. https://doi.org/10.1016/j.wace.2015.08.001
  22. Hibberd, J. M., Whitbread, R. and Farrar, J. F. 1996. Effect of elevated concentrations of $CO_2$ on infection of barley by Erysiphe graminis. Physiol. Mol. Plant Pathol. 48:37-53. https://doi.org/10.1006/pmpp.1996.0004
  23. IPCC. 2007. Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, eds. by Core Writing Team, R. K. Pachauri and A. Reisinger. IPCC, Geneva, Switzerland.
  24. IPCC. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the ffth assessment report of the intergovernmental panel on climate change, eds. by Core Writing Team, R. K. Pachauri and L. A. Meyer. IPCC, Geneva, Switzerland.
  25. Jakobsen, I., Smith, S. E., Smith, F. A., Watts-Williams, S. J., Clausen, S. S. and Gronlund, M. 2016. Plant growth responses to elevated atmospheric $CO_2$ are increased by phosphorus sufficiency but not by arbuscular mycorrhizas. J. Exp. Bot. 67:6173-6186. https://doi.org/10.1093/jxb/erw383
  26. Jongen, M. and Jones, M. B. 1998. Effects of elevated carbon dioxide on plant biomass production and competition in a simulated neutral grassland community. Ann. Bot. 82:111-123. https://doi.org/10.1006/anbo.1998.0654
  27. Ju, Z., Hu, C., Zhang, Y. and Chen, S. 2010. Effects of temperature rising on soil hydrothermal properties, winter wheat growth and yield. 9th European IFSA Symposium, 4-7 July 2010, pp. 1307-1316. Vienna, Austria.
  28. Komaromi, J., Bencze, S., Varga, B., Vida, G. and Veisz, O. 2013. Changes in the powdery mildew resistance and biomass of wheat genotypes at normal and elevated atmospheric $CO_2$ levels. Acta Agron. Hung. 61:247-254. https://doi.org/10.1556/AAgr.61.2013.4.1
  29. Lackermann, K. V., Conley, S. P., Gaska, J. M., Martinka, M. J. and Esker, P. D. 2011. Effect of location, cultivar, and diseases on grain yield of soft red winter wheat in Wisconsin. Plant Dis. 95:1401-1406. https://doi.org/10.1094/PDIS-01-11-0005
  30. Lake, J. A. and Wade, R. N. 2009. Plant-pathogen interactions and elevated $CO_2$: morphological changes in favour of pathogens. J. Exp. Bot. 60:3123-3131. https://doi.org/10.1093/jxb/erp147
  31. Langridge, P. 2012. Genomics: decoding our daily bread. Nature 491:678-680. https://doi.org/10.1038/491678a
  32. Lessin, R. C. and Ghini, R. 2009. Effect of increased atmospheric $CO_2$ concentration on powdery mildew and growth of soybean plants. Trop. Plant Pathol. 34:385-392. https://doi.org/10.1590/S1982-56762009000600004
  33. Lione, G., Giordano, L., Sillo, F. and Gonthier, P. 2015. Testing and modelling the effects of climate on the incidence of the emergent nut rot agent of chestnut Gnomoniopsis castanea. Plant Pathol. 64:852-863. https://doi.org/10.1111/ppa.12319
  34. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  35. Loladze, I. 2014. Hidden shift of the ionome of plants exposed to elevated $CO_2$ depletes minerals at the base of human nutrition. eLife 3:e02245. https://doi.org/10.7554/eLife.02245
  36. Manners, J. G. and Hossain, S. M. M. 1963. Effects of temperature and humidity on conidial germination in Erysiphe graminis. Trans. Br. Mycol. Soc. 46:225-234. https://doi.org/10.1016/S0007-1536(63)80078-9
  37. Mathur, P., Singh, V. P. and Kapoor, R. 2018. Interactive effects of $CO_2$ concentrations and Alternaria brassicae (Berk.) Sacc. infection on defense signaling in Brassica juncea (L.) Czern. & Coss. Eur. J. Plant Pathol. 151:413-425. https://doi.org/10.1007/s10658-017-1382-7
  38. Matic, S., Bagnaresi, P., Biselli, C., Orru, L., Amaral Carneiro, G., Siciliano, I., Vale, G., Gullino, M. L. and Spadaro, D. 2016. Comparative transcriptome profling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genomics 17:608. https://doi.org/10.1186/s12864-016-2925-6
  39. Mikkelsen, B. L., Jorgensen, R. B. and Lyngkjaer, M. F. 2015. Complex interplay of future climate levels of $CO_2$, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathol. 64:319-327. https://doi.org/10.1111/ppa.12272
  40. Milus, E. A., Kristensen, K. and Hovmoller, M. S. 2009. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89-94. https://doi.org/10.1094/PHYTO-99-1-0089
  41. Mitsuhara, I., Iwai, T., Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., Ohkawa, Y. and Ohashi, Y. 2008. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180). Mol. Genet. Genomics 279:415-427.
  42. Montzka, S. A., Dlugokencky, E. J. and Butler, J. H. 2011. Non-$CO_2$ greenhouse gases and climate change. Nature 476:43-50. https://doi.org/10.1038/nature10322
  43. Morgounov, A., Tufan, H. A., Sharma, R., Akin, B., Akin, B., Bagci, A., Braun, H. J., Kaya, Y., Keser, M., Payne, T. S., Sonder, K. and McIntosh, R. 2012. Global incidence of wheat rusts and powdery mildew during 1969-2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur. J. Plant Pathol. 132:323-340. https://doi.org/10.1007/s10658-011-9879-y
  44. Morison, J. I. L. and Lawlor, D. W. 1999. Interactions between increasing $CO_2$ concentration and temperature on plant growth. Plant Cell Environ. 22:659-682. https://doi.org/10.1046/j.1365-3040.1999.00443.x
  45. Nie, G., Hendrix, D. L., Webber, A. N., Kimball, B. A. and Long, S. P. 1995. Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated $CO_2$ concentration in the feld. Plant Physiol. 108:975-983. https://doi.org/10.1104/pp.108.3.975
  46. Nielsen, S. S. 2010. Phenol-sulfuric acid method for total carbohydrates. In: Food analysis laboratory manual, ed. by S. S. Nielsen, pp. 47-53. Springer US, Boston, USA.
  47. Oehme, V., Hogy, P., Franzaring, J., Zebitz, C. P. W. and Fangmeier, A. 2013. Pest and disease abundance and dynamics in wheat and oilseed rape as affected by elevated atmospheric $CO_2$ concentrations. Funct. Plant Biol. 40:125-136. https://doi.org/10.1071/FP12162
  48. Ottman, M. J., Kimball, B. A., White, J. W. and Wall, G. W. 2012. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron. J. 104:7-16. https://doi.org/10.2134/agronj2011.0212
  49. Quinn, J. A. and Powell, C. C. 1982. Effects of temperature, light, and relative humidity on powdery mildew of begonia. Phytopathology 72:480-484. https://doi.org/10.1094/Phyto-72-480
  50. Pandey, P., Irulappan, V., Bagavathiannan, M. V. and Senthil-Kumar, M. 2017. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 8:537.
  51. Paolacci, A. R., Tanzarella, O. A., Porceddu, E. and Ciaffi, M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10:11. https://doi.org/10.1186/1471-2199-10-11
  52. Prior, S. A., Runion, G. B., Marble, S. C., Rogers, H. H., Gilliam, C. H. and Torbert, H. A. 2011. A review of elevated atmospheric $CO_2$ effects on plant growth and water relations: implications for horticulture. HortScience 46:158-162.
  53. Pritsch, C., Muehlbauer, G. J., Bushnell, W. R., Somers, D. A. and Vance, C. P. 2000. Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol. Plant-Microbe Interact. 13:159-169. https://doi.org/10.1094/MPMI.2000.13.2.159
  54. Pugliese, M., Gullino, M. L. and Garibaldi, A. 2010. Effects of elevated $CO_2$ and temperature on interactions of grapevine and powdery mildew: frst results under phytotron conditions. J. Plant Dis. Protect. 117:9-14. https://doi.org/10.1007/BF03356327
  55. Pugliese, M., Liu, J., Titone, P., Garibaldi, A. and Gullino, M. L. 2012. Effects of elevated $CO_2$ and temperature on interactions of zucchini and powdery mildew. Phytopathol. Mediterr. 51:480-487.
  56. Randoux, B., Renard, D., Nowak, E., Sanssene, J., Courtois, J., Durand, R. and Reignault, P. 2006. Inhibition of Blumeria graminis f. sp. tritici germination and partial enhancement of wheat defenses by milsana. Phytopathology 96:1278-1286. https://doi.org/10.1094/PHYTO-96-1278
  57. RC Novi Sad. 2017. Forecasting and Warning Service of Serbia in plant protection. Sanitary status of winter wheat. Region Novi Sad. URL http://www.pisvojvodina.com/RegionNS/Lists/Categories/Category.aspx?Name=Bolesti%20strnih%20%C5%BEita/ [6 June 2017].
  58. Romero-Olivares, A. L., Taylor, J. W. and Treseder, K. K. 2015. Neurospora discreta as a model to assess adaptation of soil fungi to warming. BMC Evol. Biol. 15:198. https://doi.org/10.1186/s12862-015-0482-2
  59. Saari, E. E. and Prescott, J. M. 1975. A scale for appraising the foliar intensity of wheat diseases. Plant Dis. Rep. 59:377-380.
  60. Scherm, H. and Yang, X. B. 1998. Atmospheric teleconnection patterns associated with wheat stripe rust disease in North China. Intl. J. Biomet. 42:28-33. https://doi.org/10.1007/s004840050080
  61. Shi, W. Q., Gong, S. J., Zeng, F. S., Xue, M. F., Yang, L. J. and Yu, D. Z. 2016. Sexual reproduction and detection of mating-type of Blumeria graminis f. sp. tritici populations. Acta Phytopathol. Sin. 46:645-652 (in Chinese).
  62. StoBel, B., Freier, B. and Wechsung, F. 2013. Study on the infuence of weather periods on the occurrence of leaf rust and powdery mildew in winter wheat using an interval-based correlation approach. J. Kult.pfanzen 65:315-327.
  63. Sudisha, J., Sharathchandra, R. G., Amruthesh, K. N., Arun Kumar. and Shekar Shetty, H. 2012. Pathogenesis related proteins in plant defense response. In: Plant defence: biological control, progress in biological control 12, eds. by J. M. MErillon and K. G. Ramawat, pp. 379-493. Springer, Dordrecht, The Netherlands.
  64. Te Beest, D. E., Paveley, N. D., Shaw, M. W. and van den Bosch, F. 2008. Disease-weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology 98:609-617. https://doi.org/10.1094/PHYTO-98-5-0609
  65. Thompson, G. B., Brown, J. K. M. and Woodward, F. I. 1993. The effects of host carbon dioxide, nitrogen and water supply on the infection of wheat by powdery mildew and aphids. Plant Cell Environ. 16:687-694. https://doi.org/10.1111/j.1365-3040.1993.tb00487.x
  66. Thompson, M., Gamage, D., Hirotsu, N., Martin, A. and Seneweera, S. 2017. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: a perspective on root sugar sensing and hormonal crosstalk. Front. Physiol. 8:578. https://doi.org/10.3389/fphys.2017.00578
  67. Tiedemann, A. V. and Firsching, K. H. 2000. Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environ. Pollut. 108:357-363. https://doi.org/10.1016/S0269-7491(99)00214-6
  68. Trouvelot, S., Heloir, M.-C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., Combier, M., Trda, L., Daire, X. and Adrian, M. 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front. Plant Sci. 5:592.
  69. van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  70. Wang, F., Wu, W., Wang, D., Yang, W., Sun, J., Liu, D. and Zhang, A. 2016. Characterization and genetic analysis of a novel light-dependent lesion mimic mutant, lm3, showing adult-plant resistance to powdery mildew in common wheat. PLoS One 11:e0155358. https://doi.org/10.1371/journal.pone.0155358
  71. Wicker, T., Oberhaensli, S., Parlange, F., Buchmann, J. P., Shatalina, M., Roffer, S., Ben-David, R., Dolezel, J., Simkova, H., Schulze-Lefert, P., Spanu, P. D., Bruggmann, R., Amselem, J., Quesneville, H., Ver Loren van Themaat, E., Paape, T., Shimizu, K. K. and Keller, B. 2013. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat. Genet. 45:1092-1096. https://doi.org/10.1038/ng.2704
  72. Wolfe, D. W., Gifford, R. M., Hilbert, D. and Luo, Y. 1998. Integration of photosynthetic acclimation to $CO_2$ at the whole-plant level. Glob. Chang. Biol. 4:879-893. https://doi.org/10.1046/j.1365-2486.1998.00183.x
  73. Yamori, W., Hikosaka, K. and Way, D. A. 2014. Temperature response of photosynthesis in $C_3$, $C_4$, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119:101-117. https://doi.org/10.1007/s11120-013-9874-6
  74. Zadoks, J. C., Chang, T. T. and Konzak, C. F. 1974. A decimal code for the growth stages of cereals. Weed Res. 14:415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
  75. Zeng, X., Luo, Y., Zheng, Y., Duan, X. and Zhou, Y. 2010. Detection of latent infection of wheat leaves caused by Blumeria graminis f. sp. tritici using nested PCR. J. Phytopathol. 158:227-235. https://doi.org/10.1111/j.1439-0434.2009.01594.x
  76. Zhang, Z., Henderson, C., Perfect, E., Carver, T. L., Thomas, B. J., Skamnioti, P. and Gurr, S. J. 2005. Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol. Plant Pathol. 6:561-575. https://doi.org/10.1111/j.1364-3703.2005.00303.x
  77. Zheng, Y., Luo, Y., Zhou, Y., Zeng, X., Duan, X., Cao, X., Song, Y. and Wang, B. 2013. Real-time PCR quantifcation of latent infection of wheat powdery mildew in the feld. Eur. J. Plant Pathol. 136:565-575. https://doi.org/10.1007/s10658-013-0188-5
  78. Zimmerli, L., Stein, M., Lipka, V., Schulze-Lefert, P. and Somerville, S. 2004. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J. 40:633-646. https://doi.org/10.1111/j.1365-313X.2004.02236.x