• Title/Summary/Keyword: Hierarchical Road Network

Search Result 17, Processing Time 0.03 seconds

On Finding a Convenient Path in the Hierarchical Road Network

  • Sung, Ki-Seok;Park, Chan-Kyoo;Lee, Sang-Wook;Doh, Seung-Yong;Park, Soon-Dal
    • Management Science and Financial Engineering
    • /
    • v.12 no.2
    • /
    • pp.87-110
    • /
    • 2006
  • In a hierarchical road network, all roads can be classified according to their attributes such as speed limit, number of lanes, etc. By splitting the whole road network into the subnetworks of the highlevel and low-level roads, we can reduce the size of the network to be calculated at once, and find a path in the way that drivers usually adopt when searching out a travel route. To exploit the hierarchical property of road networks, we define a convenient path and propose an algorithm for finding convenient paths. We introduce a parameter indicating the driver's tolerance to the difference between the length of a convenient path and that of a shortest convenient path. From this parameter, we can determine how far we have to search for the entering and exiting gateway. We also propose some techniques for reducing the number of pairs of entries and exits to be searched in a road network. A result of the computational experiment on a real road network is given to show the efficiency of the proposed algorithm.

Robust Hierarchical Data Fusion Scheme for Large-Scale Sensor Network

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions, environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appropriate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the management and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

Trajectory Clustering in Road Network Environment (도로 네트워크 환경을 위한 궤적 클러스터링)

  • Bak, Ji-Haeng;Won, Jung-Im;Kim, Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.317-326
    • /
    • 2009
  • Recently, there have been many research efforts proposed on trajectory information. Most of them mainly focus their attention on those objects moving in Euclidean space. Many real-world applications such as telematics, however, deal with objects that move only over road networks, which are highly restricted for movement. Thus, the existing methods targeting Euclidean space cannot be directly applied to the road network space. This paper proposes a new clustering scheme for a large volume of trajectory information of objects moving over road networks. To the end, we first define a trajectory on a road network as a sequence of road segments a moving object has passed by. Next, we propose a similarity measurement scheme that judges the degree of similarity by considering the total length of matched road segments. Based on such similarity measurement, we propose a new clustering algorithm for trajectories by modifying and adjusting the FastMap and hierarchical clustering schemes. To evaluate the performance of the proposed clustering scheme, we also develop a trajectory generator considering the observation that most objects tend to move from the starting point to the destination point along their shortest path, and perform a variety of experiments using the trajectories thus generated. The performance result shows that our scheme has the accuracy of over 95% in comparison with that judged by human beings.

A hierarchical path finding algorithm with the technique of minimizing the number of turn (방향전환 최소화 기법을 적용한 계층 경로 탐색 알고리즘)

  • Moon, Dae-Jin;Cho, Dae-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.323-326
    • /
    • 2007
  • When traveling on real road network, it generally takes less travel time in a near straight path than a zig-zaged path with same source and destination. In order to making a left(right/u) turn, the delay should be required to decrease the speed. The traffic signal waiting time of left(right/u) turn is probably longer than straight driving. In this paper, we revise the previous hierarchical path finding algorithm to reduce the number of turns. The algorithm proposed in this paper complied with a hierarchical $A^*$ algorithm, but has a distinct strategy for edge weight. We define an edge that makes a turn as a turn-edge and give the turn-edge lower weight to maintain the straightness of the whole path.

  • PDF

A Dynamic Shortest Path Finding Model using Hierarchical Road Networks (도로 위계 구조를 고려한 동적 최적경로 탐색 기법개발)

  • Kim, Beom-Il;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.91-102
    • /
    • 2005
  • When it comes to the process of information storage, people are likely to organize individual information into the forms of groups rather than independent attributes, and put them together in their brains. Likewise, in case of finding the shortest path, this study suggests that a Hierarchical Road Network(HRN) model should be selected to browse the most desirable route, since the HRN model takes the process mentioned above into account. Moreover, most of drivers make a decision to select a route from origin to destination by road hierarchy. It says that the drivers feel difference between the link travel tine which was measured by driving and the theoretical link travel time. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Stochastic Process model uses the historical patterns of travel time conditions on links. The HRN model has compared favorably with the conventional shortest path finding model in tern of calculated speeds. Even more, the result of the shortest path using the HRN model has more similar to the survey results which was conducted to the taxi drivers. Taxi drivers have a strong knowledge of road conditions on the road networks and they are more likely to select a shortest path according to the real common sense.

A Study on Data Model Migration for Transportation Digital Map to be available as a Raw Database of Car Navigation System (차량 항법용 원도로 활용하기위한 교통 주제도 데이터 모델 전환에 관한 연구)

  • Hahm, Chang-Hahk;Joo, Yong-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2010
  • The aim of this paper is to come up with a methodology of migration for current transportation digital map in order to construct NDRM, which is the most essential map data for car navigation system. The model suggested through our study is able to efficiently produce navigable service map for route finding and guidance as well as to make the best of general road network developed by KOTI.

Kalman Filtering-based Traffic Prediction for Software Defined Intra-data Center Networks

  • Mbous, Jacques;Jiang, Tao;Tang, Ming;Fu, Songnian;Liu, Deming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2964-2985
    • /
    • 2019
  • Global data center IP traffic is expected to reach 20.6 zettabytes (ZB) by the end of 2021. Intra-data center networks (Intra-DCN) will account for 71.5% of the data center traffic flow and will be the largest portion of the traffic. The understanding of traffic distribution in IntraDCN is still sketchy. It causes significant amount of bandwidth to go unutilized, and creates avoidable choke points. Conventional transport protocols such as Optical Packet Switching (OPS) and Optical Burst Switching (OBS) allow a one-sided view of the traffic flow in the network. This therefore causes disjointed and uncoordinated decision-making at each node. For effective resource planning, there is the need to consider joining the distributed with centralized management which anticipates the system's needs and regulates the entire network. Methods derived from Kalman filters have proved effective in planning road networks. Considering the network available bandwidth as data transport highways, we propose an intelligent enhanced SDN concept applied to OBS architecture. A management plane (MP) is added to conventional control (CP) and data planes (DP). The MP assembles the traffic spatio-temporal parameters from ingress nodes, uses Kalman filtering prediction-based algorithm to estimate traffic demand. Prior to packets arrival at edges nodes, it regularly forwards updates of resources allocation to CPs. Simulations were done on a hybrid scheme (1+1) and on the centralized OBS. The results demonstrated that the proposition decreases the packet loss ratio. It also improves network latency and throughput-up to 84 and 51%, respectively, versus the traditional scheme.