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Abstract

The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions,

environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appro-

priate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the man-

agement and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider

the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed

for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network

against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between

the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.
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1. INTRODUCTION

In order to construct the advanced driver assistant system

(ADAS), it is important to gather useful data such as traffic flows,

traffic control, accidental circumstances, road conditions,

conditions of drivers and cars, and other environmental factors to

determine the circumstances, which can cause accidents and

provide drivers with a more convenient and safer ambiance.

Gathering the data and transforming it into useful information

requires the integration of information technology with the

ADAS. In this regard, a large-scale sensor network can offer a

well-suited solution for this purpose. 

It is important to monitor the road surface temperatures because

it can fluctuate significantly depending on the time of day, extent

of cloud cover, sub-surface conditions (e.g., frost penetration,

moisture presence, and thermal retention properties), and type of

road surface. A variety of sensors and equipment has been

developed to measure and monitor road and weather conditions.

They provide monitoring of road temperature, wet/dry status,

freeze point of the solution on the road, presence of chemicals and

concentration, and subsurface temperatures. These sensors report

the road surface as being wet, dry, or frozen, and further report the

road surface temperature. The sensors are embedded flush in the

road and the sub-surface; moreover, they generate data that can be

used to identify trends. 

A common approach used in the road surface sensors is the

monitoring of road surface conductivity, which changes as the

surface conditions of the road change. Passive road sensors (see

Fig. 1) are embedded in the road without any heat energy being

transferred to or from the sensor. They attempt to measure the

road surface conditions and the residual salt using conductivity,

capacitance, vibration, radar, or other methods. The monitoring of

the relative parameters of the road surface is equally important to

improve the efficiency and effectiveness of the winter maintenance
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operations and to better inform motorists of the driving conditions.

The amount of highway salt used in de-icing roads is largely

dependent upon the mass of snow or ice on the road surface and

the pavement temperature. The accurate knowledge of pavement

surface temperature assists in determining the suitable salt

application rates and reduces salt waste for fiscal and

environmental reasons; moreover, it reduces structural degradation

such as chloride-induced corrosion of reinforced concrete

structures, etc.

The recent advances in large-scale sensor network technologies

have enabled the deployment of a large number of sensors in the

surrounding environment. Each sensor consists of a small node

with sensing, computing, and communication capabilities. Owing

to the limited processing capabilities of the sensor nodes, sensor

readings are minimally processed at the sensor network level.

Subsequently, the sensor data is transmitted through a multi-hop

communication route to a centralized sensor database system for

further processing. An important task of a sensor network is the

ability to detect, track, and classify objects. As objects move

around the sensor field, they affect the observations at nearby

nodes. The key to collaboration across nodes is to determine the

possible relations between the observations at different nodes, and

subsequently use these related observations to generate more

accurate estimates of the existence, track, and type of object. 

Graphical modeling techniques such as Kalman filtering and

hidden Markov models have been employed very successfully in

sensor networks [1,2]. In terms of the network topology, we study

large-scale sensor networks that lie within a two-dimensional

plane and a two-dimensional strip. The placement of sensors can

vary significantly in different applications. In a “structured” sensor

network application (e.g., video surveillance system), the sensors

are placed at specific locations. However, in an “unstructured”

sensor network application (e.g., battlefield surveillance), the

sensors may be randomly placed. In this work, we focus on the

latter case wherein sensors are randomly placed in a field. The

arbitrary networks are inherently robust and time efficient [3-5].

First, they are surprisingly fault tolerant against random node

failures. Second, they usually exhibit a small-world phenomenon

[5], i.e., the average link length (in hops) scales logarithmically (or

polylogarithmically) with the network size, resulting in

considerable time efficiency. In addition, empirical studies [6]

show that arbitrary topologies have a positive impact on the

performance (through fewer messages and smaller latency) of

gossiping algorithms in static sensor networks. It is conceivable

that nodes group together in large-scale sensor networks to form

arbitrary networks.

The deployment of a sensor network in the ADAS presents

challenges. The first challenge is the design and implementation

of an arbitrary topology of a large-scale sensor network. This

includes the selection of both an arbitrary topology and an

adequate set of communication protocols capable of providing the

necessary autonomy. Secondly, the stringent restriction (i.e., non-

Gaussian channel noise which is typical in communication

systems) of sensor network nodes strongly influences the task of

decision-making in the network architecture. Considering these

premises, we address the estimation and fusion problems in large-

scale sensor networks with the aim of obtaining an optimal

performance in the monitoring of road surface temperature. The

surface temperature monitoring system of the road using a robust

cluster estimator demonstrates the robustness of its network

against outliers or failure of sensors, 

 This paper is organized as follows. The problem is formulated

in Section 2. In Section 3, we propose a robust hierarchical

estimate fusion algorithm within the link failure between the

sensors and cluster heads in sensor networks. Hence, the fusion

estimate of the fusion center is a linear combination of the fused

estimates of each cluster head, and the fusion estimate of the

cluster heads is a linear combination of the local estimate.

Therefore, the estimates fused in the cluster heads are computed

through a local filter in each sensor node. In Section 4, the local

filter is designed to be robust to measurement uncertainty. In

Section 5, we present the simulation results of estimation of road

surface temperature with brief concluding remarks in Section 6.

2. PROBLEM FORMULATIION

As explained in the previous section, the aim of this research is

to estimate and fuse the road surface temperature data in the

sensor networks. In our research scenario, numerous temperature

sensors are deployed widely in the ADAS to measure the road

surface temperature. A dynamic system is required to achieve

global data fusion based on the sensor measurements. The

temperature can be modeled as a dynamic system; moreover, the

measurement system represents the temperature sensors. Hence,

the following dynamic system can be briefly explained as [7]

k : Discrete time instance, k = 0, 1, 2, ..., tk = kΔt

Ts,k : Current road surface temperature

Ta,k : Current air temperature

Dk : Current dew point

hk : Current relative humidity
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Wa,k : Average wind speed

Wm,k : Maximum wind speed

vk : Environmental noise

 : Temperature measurement obtained from ith sensor

 : Measurement noise in ith sensor

θ(i) : Uncertainty for ith sensor

N: total number of sensors in sensor networks

The dynamic system model for state xk is of the following form:

(1)

The multi-sensor measurement model containing N sensors is

given as

(2)

where , . 

The environmental noise vk and the measurement error

 are uncorrelated white Gaussian noise Rr~

, . The initial state x0 is

normal, . N(·, ·) is the normal Gaussian density.

Notably, all the sensors (local filters) are working on the same

state vector xk. 

There are a number of applications where the probability that

the measurements contain only noise is non-zero. Hence, we

assume that the unknown parameters θ(i), i = 1,..., N are derived

from the set {0, 1}. If the ith sensor is out of order, such that the

unknown parameter θ(i) equals “0”, then . If the ith sensor

normally obtains data with a noise measurement error, such that

θ(i) equals “1”, then .

The aim is to estimate the current state xk in (1) considering the

observations in (2). In order to optimally estimate the current state

of road surface temperature, in Section 3, we propose a robust

estimate fusion algorithm. Subsequently, we describe a local

estimator to tackle the measurement uncertainty problem in

Section 4, i.e., the Laniotis Kalman filter (LKF) [8,9].

3. ROBUST HIERARCHICAL DATA FUSION 

WITHIN LINK FAILURE IN SENSOR 

NETWORKS

3.1 Architecture for Decentralizwd Estimate 

Fusion Algorithm

A hierarchical architecture in Fig. 2 is selected for the large-

scale sensor networks. In Fig. 2, the sensor nodes are connected

to the nearest cluster and each cluster transmits the local fused

estimate to the fusion center. The advantage of this topology is the

reduction of the computation complexity of the decentralized data

fusion algorithm. The sensor networks based on the hierarchical

architecture consists of three layers. The first layer is the sensor

system (sensor and node), which obtains the road surface temperature

data (measurement value) and possesses a computational ability to

estimate the state of the object based on the measurement value.

The second layer, called a cluster head, obtains the information,

which can be the measurement value or the estimate and its

covariance, from the first layer, and subsequently fuses all the

information. The third layer is the base station or the fusion center

that fuses all the fused information obtained from the clusters to

compute widely fused information [10].

3.2 Estiamate Fusion within Link Failure betweeen 

Cluster Heads and Nodes

In most applications, the information used in the sensor

networks is converted into a form that determines the estimated

state of the target objects. In numerous cases, especially in

industrial applications, the information can be represented as

means and variances that can be combined within the framework

of Kalman-type filters. A decentralized sensor network for the

determination of the position of an unmanned aerial vehicle, for

instance, can combine the acceleration, fusing the estimates from

a node measuring the pressure of engines with those of the angle

sensors attached to each wings. If each independent node provides

the mean and variance of its estimate of each sensor, fusing the
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estimates to obtain a better filtered estimate is relatively easy [11]. 

The most serious problem in the decentralized data fusion of

sensor networks is the effect of redundant information.

Covariance information must be maintained to avoid this problem.

However, maintaining consistent cross covariances in arbitrary

decentralized networks is not possible. The only reasonable way

to achieve robustness and consistency in a general decentralized

network is by exploiting a data fusion mechanism that does not

require independence assumptions such as Covariance Intersection

(CI) [11].

In subsection (3.2.1), the global network estimate is explained,

which is the final fused estimate . In order to achieve the final

estimate , the fused estimates  in the cluster head are

required, along with their variances . The estimates and their

covariance in the cluster head are derived in subsection (3.2.2). In

order to calculate  and , the local estimate  and its

variance  should be provided to each cluster head. Thus, in

Section 4, a robust local estimator under measurement uncertainty

is described to obtain  and  for each sensor node.

3.2.1 Global Network Estimate 

In the base station, the widely fused estimate  is calculated.

Further,  and  indicate the fused estimates and the

information form of covariances in each cluster head, respectively.

Furthermore, L is the number of cluster heads linked to the fusion

station. Based on the information from each cluster head, the

global estimates are obtained as

, (3)

where the weights are calculated [12],

,

(4)

(5)

 

Finally, the global estimate takes the form,

(6)

As derived above, to achieve the final fused estimate , the

fused estimates  in the cluster head are required, along with

their variance . In order to calculate  and , the local

estimate  and its variance  should be provided to each

cluster head. Thus, in Section 4, a robust local estimator under

measurement uncertainty is described to obtain  and  for

each sensor node.

3.2.2 Local Fusion Estimate in Cluster Heads 

Using the CI algorithm, it is possible to fuse estimates from

each cluster, despite a link failure between the nodes and clusters

or the clusters and base station owing to an unreliable

communication system.

In each cluster head, the fused estimate  of the state xk and

its covariance  are computed, where i and j represent the

sensor index and the cluster index, respectively. Further, 

represents i
th
 node linked to the j

th
 cluster head and Nj is the

number of sensors linked to the j
th
 cluster head. For example,

 indicates that 1
st
, 4

th
, 5

th
 and 10

th
 sensors are

connected to 1
st
 cluster head, and N1 equals 4. Further,  and

 are the local estimate and the covariance computed from the

i
th
 sensor node, respectively. The local estimator is described in

Section 4. The data fusion in the cluster heads is computed as 

 (7)

where the weights  are calculated [12],

, (8)

. (9)

4. LOCAL ESTIMATE USING LKF

The local estimate is denoted as  and its variance is denoted

as  under measurement uncertainty [8,9]. The Bayesian

approach forms the basis of the LKF in which the unknown

parameter θ(i) is assumed to be random with prior probabilities.

Moreover θ(i) is initially selected randomly and does not change.

(10)

correspond to the posterior probabilities of , if  is known,

and are calculated through the recursive Bayesian formula [10],

where 

x̂k

x̂k
ẑ
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(11)

 and  are the standard local Kalman estimates

matched to the state system (1) and measurement system (14).

 

(12)

where i represents the ith sensor and j represents the index of the

unknown parameter, under the condition that the unknown

parameter θ
(i) belongs to the discrete space, i.e., , j =

1, 2.

It is an estimate matched to the linear system (4) with a fixed

i. The Kalman estimate  can subsequently be determined

using the standard Kalman filter equations [13], [14]. In this

equation, the sensor index i is fixed.

 

(13)

As discussed above, the efficiency of the LKF (12)-(15)

depends on the dimensions of the system (1), (2), since it requires

the calculation of a large number of posterior probabilities

 at each time instance, though the filtering algorithm

considerably reduces the computational burden and further aids in

achieving online computational requirements.

5. SIMULATION

In this section, the algorithm explained in previous sections is

applied to the widely estimated pavement temperature. In order to

create a dynamic system model of pavement temperature, linear

regression analysis was used based on the data on metrological

parameters—air temperature, dew point, relative humidity,

average wind speed, wind gust, and other parameters [7]. 

 Based on the data, the state parameter and measurement system

is same as (1) and (2) in Section 2. All the assumptions described

in Section 2 are applied in this simulation. The time index k

represents the hour. The system model was constructed as

 

(14)
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Fig. 4. A Hierarchical Data Fusion in Sensor Networks
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Gaussian white noises with intensities Q and η(i), respectively. The

initial state is subjected to . The prior probabilities

were set to , . The values of the system

and measurement parameters were set to: Q = 5, η(i) = 0.5 × i. 

The mean square error of the fused estimate is calculated from

. In Figs. 3 and 4, the dynamic pavement

surface temperature system (14) is adopted to apply and test the

accuracy of the proposed algorithm. The result shows that the

proposed algorithm is robust to measurement uncertainty and link

failure between the nodes and the cluster heads. 

6. CONCLUSIONS

Building an advanced driver assistant system requires data such

as traffic flows, traffic control, accident circumstances, road

conditions, and weather. In this regard, large-scale sensor

networks can be an appropriate solution since they were designed

for this purpose.

In this paper, hierarchical fusion architecture for an arbitrary

topology of the large-scale sensor networks is proposed. The

advantage of the hierarchical architecture is the reduction of the

computational complexity of the decentralized data fusion

algorithm [10]. In sensor networks, apart from the computational

complexity, the link failure between the nodes and cluster heads

should be addressed [11]; thus, CI is applied to overcome the

effect of redundant information. 

In large-scale sensor networks, numerous sensors are used to

measure the road surface temperature. However, some sensors

could be out of order or unable to obtain the temperature data

owing to disorders. In this case, we need to isolate those sensors

to properly calculate the widely fused estimate of the surface

temperature. Thus, the LKF is applied to detect the faulty sensors

and to isolate them [8,9]. 

The result shows that the proposed algorithm is robust to

measurement uncertainty and link failure between the nodes and

the cluster heads.
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