International Journal of Management Science
Vol 12, No 2, November 2006

On Finding a Convenient Path in
the Hierarchical Road Network”

Kiseok Sung

Dept. of Industrial and Systems Engineering,
Kangnung National University, Gangneug, Korea

Chan-Kyoo Park*

Dept. of Management, Dongguk University, Seoul, Korea

Sangwook Lee
Samsung SDS Co., Seoul, Korea

Seungyong Doh

IE & Software Group, Samsung Electronics Inc., Suwon, Korea

Soondal Park

Dept. of Industrial Engineering, Seoul National University, Seoul, Korea

(Reczived Apr. 2005; Revised Aug. 2006; Accepted Nov. 2006)

ABSTRACT

In a hierarchical road network, all roads can be classified according to their attributes such as speed
limit, number of lanes, etc. By splitting the whole road network into the subnetworks of the high~
level and low—level roads, we can reduce the size of the network to be calculated at once, and find a
path in the way that drivers usually adopt when searching out a travel route. To exploit the hierar—
chical property of road networks, we define a convenient path and propose an algorithm for finding
convenient paths. We introduce a parameter indicating the driver’s tolerance to the difference be-
tween the length of a convenient path and that of a shortest convenient path. From this parameter,
we can determine how far we have to search for the entering and exiting gateway. We also propose
some techniques for reducing the number of pairs of entries and exits to be searched in a road net—
work. A result of the computational experiment on a real road network is given to show the effi—
ciency of the proposed algorithm.

Keywords: Route Planning, Convenient Path, Shortest Path, Hierarchical Road Network

* This work was financially supported by overseas scholarship of LG-YeonAm Foundation
and Kangnung National University during the year 2004.
** Corresponding author, Email: parkck@dongguk.edu

87

88 SUNG, PARK, LEE, DOH, AND PARK

1. INTRODUCTION

In route planning and traffic assignment, the iterative calculation of shortest
paths is needed as a basic component. Finding shortest paths in a large-scale road
network will require much computational time and memory space. The approach
of using shortest paths in the route planning is based on the assumption that
drivers prefer a shortest route. In many real situations, however, drivers tend to
choose a route that is not only fairly short but also convenient to travel through,
although the path might be not a shortest one.

In some previous researches, the properties of the hierarchical structure of
road networks have been utilized. A hierarchical road network consists of a few
grades of roads ranging from dense and low-speed local roads to sparse and high-
speed expressways. When drivers find a route in the hierarchical road network,
they first search the subnetwork of low-grade local roads in order to reach a
gateway into the subnetwork of high-grade roads, then they go through high-
grade roads to a gateway from which the destination can be reached through low-
grade roads. This hierarchical approach has two major advantages. One is that it
can reduce the computational effort for finding short routes because the whole
road network is partitioned into small subnetworks in which routes can be found
more easily. The other advantage is that the hierarchical property enables us to
find more human-oriented routes. A shortest path of the whole network may
cause a driver to drive in and out of local roads and high-speed expressways re-
peatedly [5].

Shapiro, Waxman, and Nir [7] first discussed about the practical situations
when the additional information about the types of roads is available, and intro-
duced a level graph that is based on the level of nodes and edges. They provided
some algorithms for finding a path in the level graphs under the assumption that
it is desirable to spend as little time as possible in low-grade roads. Similarly,
Campbell [2] used continuous space models to analyze several urban travel deci-
sions in which a driver must select between a shortest route on relatively low-
speed roadways and a longer route which includes travel on high-speed roadways.
Chou, Romeijn, and Smith [3] proposed a hierarchical algorithm for approximat-
ing a shortest path between all pairs of nodes in a large-scale network. As a rule
for selecting entering and exiting gateways on the high-level subnetwork, they
considered two strategies. One 1s to choose the gateway nearest to the origin and
the gateway nearest to the destination as the entering gateway and the exiting
gateway, respectively. The other is to choose the pair of gateways that approxi-

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 89

mate a shortest path by enumerating all pairs of entering and exiting gateways
on the high-level subnetwork. Recently, Liu [5] proposed an approach of exploit-
ing the knowledge of road types and partitioning the whole network into many
small subnetworks to reduce the time and memory space required for approximat-
ing a shortest path. Also, Seong, Sung and Park [6] proposed an algorithm for
finding a shortest path of a grid-type urban road network by making use of the
hierarchical structure of road networks. Recently, Duckham and Kulik [4] pro-
posed a “simplest” path, in terms of the instruction complexity, for automated
route selection for navigation. The “simplest” paths are concerned with only the
number of turns at the intersections, rather than the length of the paths.

In this paper, to exploit the hierarchical structure of road networks, we de-
fine convenient paths. Most existing researches focused only on finding one con-
venient path which goes through the entering and the exiting gateway nearest to
the origin and the destination, respectively. This approach leads to a convenient
path whose length is far greater than that of a shortest convenient one. On the
other hand, the existing approach for finding a shortest convenient path considers
all pairs of the entering and exiting gateways, and consequently requires much
computational time. The main purpose of this paper is to propose a new algorithm
for finding a nearly shortest convenient path with a little computation. For this,
we introduce a parameter indicating the driver’s tolerance of the difference be-
tween the length of a convenient path and that of a shortest convenient path. The
parameter will limit the range within which we need to search nodes for en-
trances and exits to find a convenient path acceptable to the drivers. In addition,
some techniques are proposed to reduce the number of pairs of entries and exits
to be searched in a road network. The second purpose is to discuss whether con-
venient paths can approximate a shortest path in the whole network. Although
the hierarchical structure of road networks has been exploited in previous studies,
there have been no studies which deal with the gap between the length of conven-
ient paths and that of a shortest path in the whole network. We derive the rela-
tionship between the length of convenient paths and that of a shortest convenient
path, and between the length of a shortest convenient path and that of a shortest
path. Experimental results show that a shortest convenient path can be a good
approximation to a shortest path.

This paper is organized as follows: In section 2 a convenient path is defined,
and in section 3 its properties are discussed. In section 4, we propose some tech-
niques for enumerating convenient paths efficiently. In section 5, a new algorithm
for finding a shortest convenient path in the hierarchical network is proposed,
and the experimental results of the proposed algorithm using a real road network

90 SUNG, PARK, LEE, DOH, AND PARK

are presented in section 6. Finally, some conclusions of this work are given in sec-
tion 7.

2. THE DEFINITION OF A CONVENIENT PATH

Consider a directed road network G = (IN,A4) with N and A being the set of nodes
and the set of arcs, respectively. The travel time or the length of an arc (i,j) is

denoted by c;. The length and the travel time of arcs will be used interchangea-
bly. We assume that ¢; >0 for every arc (i,j)€ A. For each arc (,j)e A, the

nodes i and j are called the head node and the tail node of arc (i,j) . A sequence of
distinct nodes, p=(G =1,,1q,...,j=1,) with r>2, is called a path from i to j or
an i-j path if it satisfies the condition that (i,,i,,;) € A for each 1<k <r-1.The

expression (i,j) € p means that arc (i,) is included in path p. Let d(p) denote the

length of a path p, that is, the sum of the length of the arcs included in p. Let P;

denote the set of all paths from i to j. Then, the shortest path problem is to find
the path p* € P, such that d(p*) <d(p), Vp € P, where s and ¢ are the origin

and destination, respectively. Note that if ¢; denotes the travel time of arc (i,),

the path p* represents the minimum traveling-time path. Throughout this paper,
it is assumed that there is at least one path from s to ¢. Also, if there is no explicit
description, the origin and the destination of any path are assumed to be s and ¢,
respectively.

All roads of a road network can be classified into two groups according to
their width or speed limit. One group consists of roads with higher speed limit
and many lanes; for example, expressways and major roads. The other consists of
roads with lower speed limit and a few lanes; for example, local roads and minor
roads. The roads of the first group and the second group form the high-level sub-
network and low-level subnetwork, which will be denoted by Gy and G, re-
spectively. Then, G can be divided into two subnetworks Gy =(Ny,Ay) and
G, =(N;,A;) where, Ny UN; =N, Ay WA; = A and Ay nA; = . Note that
Ny and N; have common nodes, but no arc (i,j) can be an element of both
Ay and A;. Without a great loss of generality, it is assumed that both G and
Gy are connected. If G is not connected, finding a path in G is the same as find-

ing a path in each connected component of G. The assumption of the connected-

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 91

ness of Gy may not hold in some real road networks. Even in that case, Gy
can be made connected by moving some arcs of G; into Gy if G satisfies con-
nectedness.

Let p denote an i—j path where p=Q@=1i,,15,--,j=1,). If (,4,5,)eCGy
and (iy,i,,,) € Gy for some 2<u<r-1,node i, is called an entry of p. Also, if
the first arc (i,,i,) of p is on the high-level subnetwork i(=1i,), is called an en-
try of p. Similarly, if (i, ;,i,) e Gy and (i) € G, for some 2<v<r-1,node

i, is called an exit of p. If the last arc (i,_,,i,) of p is on the low-level subnet-

work j(=i,), is also called an exit of p. A convenient path is defined as follows:

Definition 1 (Convenient path). A path p=(G=iy,i4,-:-, j=1,) is called a con-
venient path if p has at most one entry and one exit.

For example, in Figure 1 paths (a), (b), (c), (d), and (e) are convenient paths, but
path (f) and (g) are not a convenient path because it has two entries and two exits.

Note that path (a) has neither an entry nor an exit. Path (a) goes through only the
low-level subnetwork, while (b) goes through only the high-level subnetwork.

(b)

i%

©
(d)

°§°

®

i

®

(&) e

==p: a high-grade arc —: a low-grade arc

|

Figure 7. Examples for convenient and non—convenient paths

The definition of a convenient path is motivated by the manner in which
drivers think when they make a route choice. When drivers plan a route in the
hierarchical road network, they search an entering gateway on the high-level
subnetwork and then go through high-grade roads to an exiting gateway from
which the destination can be reached through low-grade roads. In general, drivers

92 SUNG, PARK, LEE, DOH, AND PARK

do not prefer to paths which enter into and get out of the high-level subnetwork
repeatedly because the paths are not convenient for drivers to travel through.

If a convenient path is not longer than that of any other convenient path, it is
called a shortest convenient path. Note that a shortest convenient path might
not be a shortest one. For a convenient path p that has one entry and one exit, the
subpath of p between the entry and the exit, is called a major segment of p. A
convenient path has at most one major segment. Similarly, the subpaths of p
which are formed after removing all arcs in the major segment are called minor
segments of p. A convenient path has at most two minor segments. Let a(p)

denote the length of the major segment of p, and A(p) denote the sum of the
length of the minor segments of p. Note that d(p) = a(p)+ B(p). Moreover, if a
convenient path p has only minor segments, then d(p)= A(p) and a(p)=0.
Similarly, if p consists of only one major segment, then d(p) = a(p) and B(p) =0.

A minimal convenient path is defined as follows:

Definition 2 (Minimal convenient path). A convenient path is called a mini-
mal convenient path if its minor segments are shortest paths in the low-level sub-
network and its major segment is a shortest path in the high-level subnetwork.

For example, consider an undirected network in Figure 2. A convenient path
152555859512 is not a minimal convenient path because its minor
segment 1—2—5 is not a shortest path in the low-level subnetwork. Path
153553859512 is a minimal convenient and shortest convenient path
from 1 to 12. In fact, any shortest convenient path is a minimal convenient one.
Another path 1 53 >4 56—>7—>11->12 is a minimal convenient path which
consists of only one minor segment. Since any shortest convenient path is a
minimal convenient one, we are concerned with only minimal convenient paths to
find a shortest convenient path.

2\ 11

== a high-grade arc ——: a low-grade arc

Figure 2. Minimal convenient paths in a road network

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 93

There have been two methods for finding convenient paths: One method is to
find a convenient path under the assumption that it is desirable to spend as little
time as possible in the low-level subnetwork [7, 3]. This approach for finding a
convenient path will be called the nearest entry-exit algorithm because it finds the
entry and exit of the convenient path which are nearest to the origin and the des-
tination, respectively. The convenient path found by the nearest entry-exit algo-
rithm might be much longer than a shortest convenient path. For example, con-
sider convenient paths from 6 to 12 in Figure 2. The convenient path obtained by
the nearest entry-exit algorithmis 6 >4 »5—8 -9 > 12, and its length is 19.
However, the shortest convenient path from 6 to 12 is 6 >7—>8—>9—>12,
whose length is 12.

Another method for finding a convenient path is to consider all pairs of en-
tries and exits, which was used by Chou, Romeijn, and Smith [3]. This approach,
which will be called the all pairs algorithm, can find a shortest convenient path,
but requires much computational efforts.

3. SOME PROPERTIES OF CONVENIENT PATHS

To find a short convenient path with moderate computational efforts, we need to
reduce the number of pairs of entries and exits to be searched. As we consider far-
ther entries and exits from the origin and the destination, we can obtain shorter
convenient paths. This property of convenient paths is formalized in Property 1.
Throughout the paper, P,, denote the set of all minimal convenient paths from s

to t and let P,,(7T") denote {p € P,, | f(p) < T} for a positive constant 7.

Property 1. Let p* € P,, be a shortest convenient path. Let q* € P, (T) be a con-
venient path such that d(q*)<d(q), Vq e P,(T). For a constant 0<T <d(p*),
the following inequalities hold:

d(g) -d(p") _dq) , @) D

d(p”) T T
Proof.
d@’)-dp’) _dg") ;_ag)+B@)-T _ald’)

d(p”) T T ST . @

Although Property 1 holds for any convenient path g € P,(T), the first part

94 SUNG, PARK, LEE, DOH, AND PARK

of inequality (1) becomes the tightest when ¢* is applied to inequality (1). The
high value of T in Property 1 means that far entries and exits are considered, and
then the relative difference between the length of ¢* and the length of a shortest
convenient path will be reduced. The Property 1 seems to be rather trivial, but
experimental results in section 6 will show that it is useful to reduce the number
of pairs of entries and exits to be considered for finding a short convenient path.

As mentioned in the previous sections, one of the typical paths considered in
the hierarchical road networks is the convenient path which goes through the
nearest entry and exit from the origin and the destination. The following property
shows that the path might be as long as twice the length of a shortest convenient
path, even when the sum of the length of its minor segments is not less than the
length of its major segment:

Property 2. Let p* €P, be a shortest convenient path. Let peP, be a mini-

mal convenient path such that

B(p) = min S(p)
peP,

Then,
d(p)-d(p") _ a(p) -
d(p") B(p)

In addition, if B(p) = a(p), then
d(p) < 2d(p"). 4
Proof. Setting 7 = B(p) in Property 1, we obtain that

dp) -d(p") _ a(B)
dp) AP

In addition, if B(p) = a(p) then the right-hand side of inequality (3) is less than

or equal to 1. Therefore, after some arithmetic calculations we find that
d(p)<2d(p*). O

Note that if B(p) < a(p) the right-hand side of inequality (3) is greater than

1. In that case, the convenient path produced by the nearest entry-exit algorithm
might be longer than two times the length of a shortest convenient path.

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 95

Next, we discuss to what extent a shortest convenient path can approximate
a shortest path in the whole road network. The following lemma gives an upper
bound to the relative difference between the length of a shortest convenient path
and that of a shortest path.

Lemma 1. For any two nodes ue Ny and ve Ny(u=v), let g,, and r,, de-
note a shortest path of G and a shortest path of Gy from u to v, respectively. Also,
let gi, and p}, denote a shortest path and a shortest convenient path of G from s

to t, respectively. If the following inequality holds for a nonnegative constant @,

dr)-dg:,)
D! 7w ¢ g Vue Ny, Vve Ng(u#v), ®)
d(guy) : !

then
Al -de) _,

6
d(gs) ©®

Proof. If g}, is a convenient path, then d(g},) =d(p},), which implies that the
lemma is trivially established. If g, is not a convenient path, then it has at
least two major segments. Let (i, j) be the last arc of the first major segment of

g, and (k,1) be the first arc of the last major segment of g, . Let rj, be a j-k

shortest path of G . Then, we obtain a convenient path gq,, of G by replacing the

*

Jj-k subpath g3, of g, with rj . Hence, we get

d(py,) < d(gy,) = d(gg) +d(r},) —d(g}h)
<d(g)+0d(g})
<(1+6)d(gy). D

In inequality (5), if the origin is rather far away from the destination, the
paths going through the high-level subnetwork are usually shorter than the paths
going through the low-level subnetwork. Therefore, we can expect that the nu-
merator, d(r;,)—d(g,,), is not large in well-designed real road networks, and a
shortest convenient path will have almost the same length with a shortest path of
the whole network. In such a sense, # can be interpreted as a constant indicat-
ing how well a real road network conforms to the hierarchical property. As an ex-

treme case, suppose that for any v € Ny and u e Ny, there exists a shortest u-v

path which consists of only high-grade arcs. In this case, d(r,)-d(g;,) will be

96 SUNG, PARK, LEE, DOH, AND PARK

zero for any ue Ny and ve Ny, and a shortest convenient s-t path becomes a

shortest one in G.

Finally, by integrating Property 1 and Lemma 1, we come to a conclusion
that convenient paths will be a good approximation of shortest path if the road
network is well-designed and entries and exits within a moderate distance are
searched. The relationship between the length of a convenient path and that of a
shortest path can be established as follows:

Theorem 1. Let g* denote a shortest path of G from s to t, and p* eP, be a
shortest convenient path. For a constant 0<T <d(p”), let q* e P, (T) be a con-

venient path such that d(q*) <d(q), Vq € P,,(T). If inequality (5) holds, then

d(g*) - d(g") a(g”)
_——d(g*) <(1+6) — +46.

Proof. By Property 1 and Lemma 1, we easily obtain that
d(g*)-d(g*) _ d(p*) d(@*) - d(p*) d(p*)-d(g")
d(g™) d(g*) d(p®) d(g™)

a(q*)
T

<1+ +6. O

4. ENUMERATING CONVENIENT PATHS EFFICIENTLY

In this section, we are concerned with how to terminate early searching for en-
tries and exits without aggravating the quality of the final convenient path. The
first way to reduce searching efforts is to introduce a parameter 6 which means
the driver’s tolerance to the relative difference between the length of a shortest
convenient path and that of the path given by an algorithm. That is, the relative
difference between the length of the convenient path provided by an algorithm
and the length of a shortest convenient path is allowed to be at most ¢ -times
longer than a shortest convenient path. That constraint can be expressed into

d(q*)_f(p*) Sé‘, (7)
d(p*)

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 97

where p* e P, denotes a shortest convenient path and g* denotes a shortest
one among all paths of P, (7). The range of T satisfying inequality (7) is derived
by Property 1 as follows:

dq)-d’) _da) | s _ pyd@) ®

d(p") T T1+5

In other words, if we only consider the entries and exits within the distance
of d(g*)/(1+35), we can find a convenient path which is at most (1+4J)-times
longer than a shortest convenient path. The parameter § prevents an algorithm
from searching entries and exits which are too far way from the origin and desti-
nation.

The introduction of & has two advantages. Using § provides a simple way in
which drivers can control the quality of the final path by compromising with the
computational efficiency. The value of § doesn’t have to be affected by the loca-
tion of the origin and the destination. However, the value of T need to be adjusted
according to the distance from the origin (destination) to entrances (exits), which
will be not easy for every driver. In the proposed algorithm, 7 will be automati-
cally derived from & using inequality (8). Another advantage is that the introduc-
tion of § makes a significant contribution to bounding unnecessary entrances and
exits by setting T to a tighter value, which will be shown empirically by experi-
mental results in section 6.

Another way for reducing the number of pairs of entries and exits to be
searched is to make use of the information which is stored in intelligent transpor-
tation systems (ITS) or geographic information systems (GIS). Usually ITS or GIS
includes the data about the longitude/latitude or the coordinates of each node,
from which the Euclidean distance between any two nodes is calculated easily. If
the weight c; associated with each arc (i, j) represents the distance of arc (, j),

the Euclidean distance between the origin and the destination can be directly
used as a lower bound to the length of a shortest convenient path. However, if o

denotes the traveling time of arc (i, j), some transformations are required to ob-
tain a lower bound from the Euclidean distance as follows:

Property 3. Given T >0, let q* denote a convenient path such that d(q*) <d(q),
Vvq e P (T). Let p* be a shortest convenient path and let | be the Euclidean dis-
tance between the origin and the destination. Let vy and vy denote the speed limit of

high-grade arcs and low-grade arcs, respectively. Suppose that vy 2v; . If pissetto

98 SUNG, PARK, LEE, DOH, AND PARK

p= é A=), ©®
then p is a lower bound on d(p*).
Proof. Note that a(p*)+ B(p") <al(qg™)+ S(q”).
(@) In case that B(p*) < B(q*), we know that d(p*) =d(q") by definition. Also, we
know that [<a(q”)vy + B(q”")v; . Hence,

p=r pI -2y = PO gty <)+ G0

Vg H VH
Therefore, p is a lower bound to d(p*).
(1) In case that fA(p*) 2 B(q”), we know that I <a(p*)vy + B(p*)v; . Therefore,

P AN S @Y T S ap) A0,

Note that p depends on ¢*, which is the shortest convenient path among the
paths in P, (T). This means that if T changes during the search of entries/exits
and a shorter path is found, then a lower bound p can be improved to have a
greater value. The proposed algorithm will update p whenever it finds a new

convenient path which is shorter than the paths ever found.

Using such a lower bound to the length of a shortest convenient path, another
termination condition can be derived, which will help us terminate the searching
algorithm early. Consider inequality (7) again. Replacing d(p*) with its lower

bound p , we get the following inequality:

d(g")-dp") _dg") (10)
dpy p

Given &, if the right-hand side of inequality (10) is less than or equal to &,
then inequality (7) is obviously satisfied. Hence, if q* satisfies the following ine-

quality, we have already found a convenient path whose length is not greater
than (1+ 8)-times the length of a shortest convenient path:

d(q*) < p(1+9). (11)

Finally, we present another property of convenient paths, which will be used

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 99

as a termination criterion of the proposed algorithm. For a convenient path
g € P, which has an entry and exit, let 4,(q) denote the length of the subpath

of q from s to the entry, and p,(q) denote the length of the subpath of g from the
exit to t. Note that £(q) = 5,(q) + 5,(q).

Property 4. Let p* € P, be a shortest convenient path. Suppose that there exists
a minimal convenient path p e P, consisting of only low-grade arcs. Let x be one
of the nodes passed by p. Let T, and T, denote the length of the subpaths of p

from s to x and from x to t, respectively. Then,

d(p*) = min{d(i)),gg,n{d(q) | B(@) < T, or (@) <T}}}-

Proof. Since any convenient path with no major segment is not shorter than p,
we are only concerned with convenient paths which have a major segment. Let
€ P,, be a convenient path which has a major segment. Suppose that S, (q) > T,

and B,(p)>T,. Then, d(p)>T,+T, =d(p)>d(p*) .0

Property 4 can be explained as follows: To find a shortest convenient path,
nodes in the low-level subnetwork are searched one by one in order of closeness to
the origin and the destination. After searching farther nodes from the origin and
the destination, we finally come to find a node where the path from the origin and
the path from the destination are connected into a s-f convenient path which con-
sists of only low-grade arcs. Then, we can stop searching any more because the
shortest one of the minimal convenient paths found until that time is a shortest
convenient path.

5. AN ALGORITHM FOR FINDING A CONVENIENT PATH

In this section, we propose an algorithm for finding a convenient path as pre-
sented in Figure 3. For the sake of simplicity, the proposed algorithm CONVPATH
assumes that both the origin and the destination belong to the low-level subnet-
work, not to the high-level subnetwork. In case that the origin or the destination
is an element of the high-level subnetwork, some simple modifications are re-
quired so that the origin (the destination) itself is considered as an entry(an exit).
Given a constant & > 0, the proposed algorithm CONVPATH finds a convenient path

100 SUNG, PARK, LEE, DOH, AND PARK

which is at most (1+§)-times longer than a shortest convenient path. If & is set
to 0, CONVPATH produces a shortest convenient path. Otherwise, it may approxi-
mate a shortest convenient path.

CONVPATH: Finding a convenient path
1 R «Q and R «O.

2 E«J and X« O
3 Set B. tothelength of a shortest path from the origin to the nearest entry.
4 Set B tothe length of a shortest path from the nearest exit to the destination.
5 While
6 Find the next nearest node u from the origin in the low-level subnetwork.
7 Set T, «d(s—>u)+p and R« R°U{ul}.
8 If u can be an entry, then
9 find the shortest convenient path g such that its entry is u and its exit is in X.
10 If d(q) <d(g*),,set g* toq and update a lower bound p.
11 E« Eufu}.
12 End If
13 Call CHK_STOP_COND.
14 Find the next nearest node v to the destination in the low-level subnetwork
15 Set 7, «d(w—>¢+p, and R « R u{v}.
16 If v can be an exit, then
17 find the shortest convenient path g such that its entry is in £ and its exit is v.
18 If d(q)<d(q*), set g* to q and update a lower bound p.
19 X e Xu{v).
20 End If
21 Call CHK_STOP_COND.

22 End While

CHK_STOP_COND: Checking if one of the termination criteria is satisfied
1 If T =min{T,,T,} > d(g*)/(1+5), stop

2 If d(g*) < p(1+5), stop
3 If R°FAR' =, stop

Figure 3. The proposed algorithm

Some notations in CONVPATH are explained. For any node pair <u, v> with
ue N; and ve N;, ashortest path from u to v which goes through only the arcs

of A; will be denoted by u — v. CONVPATH has two parts. In lines 1-4, variables
are initialized. Constant S, and f, stores the length of a shortest path from s to

the nearest entry and the length of a shortest path from the nearest exit to ¢, re-

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 101

spectively. In lines 4-22, entries and exits for convenient paths are searched re-
peatedly until one of the termination criteria is satisfied. In each iteration of
while-loop, two new nodes are found in lines 6 and 14. If the new node found in
line 6 is an element of N, it can be an entry of convenient paths. Similarly, if

the new node found in line 14 is an element of Ny , it can be an exit of convenient

paths. The convenient paths formed by new pairs of entries and exits are consid-
ered in lines 8-12 and lines 16-20. In addition, the length of each new convenient
path is compared with that of the shortest path ever found in previous iterations.
If a new convenient path is shorter than the convenient paths ever found, updat-
ing p is performed in lines 10 and 18 as described in Property 3. These updates

enable us to obtain a tighter lower bound and eventually terminate the algorithm
earlier. E and X, which represents the set of entries and exits ever found, are also
updated in lines 11 and 19 at each iteration.

After the next nearest node is considered, CONVPATH calls CHK_STOP_COND to
check if one of the termination criteria is already satisfied. The first line of
CHK_STOP_COND tests whether T =min{T,,T;} satisfies inequality (8). At a cer-

tain iteration, CONVPATH have searched all convenient paths whose minor seg-
ments’ total length is equal to or less than T. The second line checks if inequality
(11) holds. At the third line, if a minimal convenient path having no major seg-
ments is constructed, the algorithm can stop by Property 4.

CONV is based on the bidirectional Dijkstra’s algorithm. (See [1] for the bidi-
rectional Dijkstra’s algorithm.) In fact, lines 6 and 14 performs the forward and
the backward Dijkstra’s algorithm, respectively. Line 6 finds one node which has
been most recently permanently labelled by the forward Dijkstra’s algorithm, and
the forward Dijkstra’s algorithm from s to every other node of N; can be per-

formed only one time through all iterations of while-loop. The same arguments
are applied to line 14 except that the backward Dijkstra’s algorithm is performed
instead of the forward Dijkstra’s algorithm. Therefore, the total amount of compu-
tations required for lines 6 and 14 is bounded by S(| Ny |,| A, |) where S(| N, |,

| A; |) denotes the worst case complexity of the shortest path problem in the di-
rected network G;(N;,A;r).

The complexity of CONVPATH also depends on the amount of computations in
lines 8-12 and lines 16-20. Since shortest paths between all pairs of entries and
exits in Gy need to be computed in the worst case, the total amount of computa-

tions in lines 812 and 16-20 is bounded by O(|Ny AN, £ S(INy |,| Ay 1)) .

102 SUNG, PARK, LEE, DOH, AND PARK

Therefore, the computational complexity of CONVPATH is S(IN;|,1A;]) +

O(| Ny ANy, P S(I Ny 1,1 Ay 1)) . However, since the number of the nodes of Gy
is relatively small in a real road network, it is not so impractical to store the
length of a shortest path between every pair of an entry and an exit in Gy be-
fore CONVPATH starts. In that case, the worst case complexity can be reduced to
SN, I,IAL1)+O(I Ny ANy,).

As 5 in CONVPATH decreases, a convenient path ¢* produced by CONVPATH
becomes shorter, and its length approaches to the length of a shortest convenient
path p*. By Property 1 and the termination criteria of CONVPATH, the ratio of
d(@*)—d(p*) to d(p”) is bounded by & . On the other hand, as § becomes smaller,
the number of nodes searched by CONVPATH will increase, and consequently the
amount of computations will increase. To illustrate a trade-off between computa-
tional efforts and the length of ¢, suppose that the number of nodes to be
searched by the forward and backward Dijkstra’s algorithm in CONVPATH is in-
versely proportional to (1+8). Then, the total amount of computations of CON-
VPATH can be approximated to be S(| N, |/(1+6),| A, 1/Q1+8)+O(I Ny NNy, 12/

(1+6)?). Figure 4 shows the relationship between computational efforts and the
ratio of the length difference.

10 T T T T T ¥ i — T T 1
)
'
'
\
' ratio
81y ~ 08
[y
Y computationat efforts
V'
\
A} o
8 o6 &
i %
2 \ g
& . 2
® . 2
~ =1
4t o _os B
e aeeemmT 8
2 -0.2
o o
0 1 2 3 4 5 8 7 8 9 10
&

Figure 4. Trade—off between computational efforts and the length of a convenient path

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 103

In Figure 4, the curve, labeled by ‘ratio’ and graduated in the left y-axis,
represents the change of the ratio of d(g*)-d(p*) to d(p”) as the parameter &
increases. The other curve, labeled by ‘computational efforts’ and graduated in
the right y-axis, represents the change in the computational effort as § increases.
The graph for computational efforts represents the normalized computational ef-
fort which is obtained by dividing an approximated computational complexity of
CONVPATH by T'C where TC means the amount of computations when & = 0. Since
the best computational complexity of the shortest path problem is known to be
O(l A |+ Ny llog | N |), the computational complexity of CONVPATH can be ap-

proximated to be O((| A, |+| Ny |log | Ny | /(1+&N/(1+ &)+ Ny ANy, B I(1+6)?).
As & increases frora 0 to 3, the ratio of the length difference to the shortest con-
venient path’s length decreases very sharp, but the increase in computational ef-
forts is relatively slow. In addition, when § changes from 7 to 10, the reduction of
the computational efforts is relatively slight at the sacrifice of computational effi-
ciency. Although these observations seem rather over-simplified and theoretical,
they will be validated by experimental results in the next section.

Finally, since CONVPATH is based on the bidirectional Dijkstra’s algorithm,
some additional computations may be required to find a minimal convenient path
which consists of only low-grade arcs. That is, if CONVPATH is stopped by the ter-

mination criterion, R®* "R' # &, in line 3 of CHK_STOP_COND, we need to apply a
simple post-processing procedure to find a minimal convenient path consisting of
only low-grade arcs (See [1] for the details).

6. EXPERIMENTAL RESULTS IN A REAL ROAD NETWORK

We implement the proposed algorithm and make a comparison between its per-
formance and the existing algorithms by using a road network data obtained from
geographic information systems. The road network covers all expressways and
local main roads of South Korea, and has 285,119 nodes and 664,176 arcs. In GIS,
each arc has an attribute that gives information about whether it is an express-
way or a local main road. By classifying each road of the road network into two
groups according to its attribute, we obtain a hierarchical road network. Note
that the hierarchical road network is undirected and can be easily transformed to
the directed network. The high-level subnetwork has 6,239 nodes and 12,618 arcs,
and the low-level subnetwork has 281,525 nodes and 651,558 arcs. The number of

104 SUNG, PARK, LEE, DOH, AND PARK

nodes which can be entries or exits is only 2,645 because some nodes on the high-
level subnetwork have no arcs connected with nodes on the low-level subnetwork.
The travel time of each road is derived by dividing its distance by its speed limit
where the speed limit of high-grade roads is set to 100km/h and the speed limit of
low-grade roads is set to 60km/h. The speed limits are also applied to Property 3,
le., vg =100km/h and v; =60km/h, to obtain a lower bound to the length of a

shortest convenient path.
We consider the three algorithms for finding a convenient path as follows:

o The nearest entry-exit algorithm (NEAREST): Only the entry nearest to
the origin is considered as an entering gateway. Also, only the exit nearest
to the destination is considered as an exiting gateway.

o All pairs algorithm (ALL): All pairs of entries and exits are considered for
finding a shortest convenient path.

s The proposed algorithm (CONVPATH) in Figure 3.

Table 1 shows the experimental results of the three algorithms(NEAREST, ALL,
CONVPATH) applied to 50 different pairs of origins and destinations. The pairs of
origins and destinations are chosen randomly under the constraint that a shortest
convenient path between the origin and destination includes a major segment.
The first, second and third column of Table 1 represent the data number, the
length of a shortest path and the length of a shortest convenient path between the
origin and the destination, respectively. The fourth column represents the ratio of
the third column to the second column. The fifth column represents a lower bound
to a shortest convenient path, and is computed by Property 4. In Table 1, CP
means the length of the convenient path found by the corresponding algorithm,
and £ means the sum of the length of the minor segments of a convenient path.

Therefore, the columns B/Cp (6-th, 9-th, 13-th, ...) mean the ratio of the minor

segments’ total length to the length of the convenient path found by the corre-
sponding algorithm. The columns CP/SCP (7-th, 10-th, 14-th, ...) represent the ratio
of the length of the convenient path to the length of a shortest convenient path. In
addition, the columns PAIRS (8-th, 12-th, 16-th, ...) represent the number of pairs
of entry and exit searched by CONVPATH. The columns C (11-th, 15-th, 19-th, ...)
represent the termination criterion that makes CONVPATH stop where ‘1’, ‘2’, and
‘3’ mean the line number of CHK_STOP_CON.

Although CONVPATH algorithm is experimented for § = 0, 1, ..., 10, but only
the results for 6 = 0, 0.5, 1, 2,9 are presented in Table 1. For example, the eighth
to eleventh columns show the experimental result of CONVPATH algorithm with

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 105

Table 1. The experimental results

vol sp scp lscpispl 2 NEAREST CONVPATH(S = 9) CONVPATH(S = 2)

' B ICP |CP/SCP| pairs | # /CP{CP/SCP|C| pairs | 8 /CP|CP/SCP|C
1 [32325 | 32325 | 1.000 12200 0.155 [1.094 45[0.161| 1.083 |1 | 37800]0.198| 1.000 |1
2 | 28846 | 28846 | 1.000 |1840] 0.059 | 1.262 289]0.064] 1.251 [1]| 83304{0.366| 1.000 |1
3 [28287 | 28295 { 1.000 [1600(0.231 | 1.643 58[0.231| 1643 {1 35961 0.542) 1.016 |1
4 | 25847 | 25847 | 1.000 [1800{ 0.136 | 1.013 1310.1364 1.013 | 1| 27984[0.147] 1.000 |1
5 | 30428 | 30428 | 1.000 {1560] 0.208 | 1.001 45]0.211] 1.000 |1 4480{0.211] 1.000 |1
6 | 37616 | 37616 | 1.000 |2300} 0.222 | 1.081 8710240 1.054 | 1] 27590[{0.296] 1.000 |1
7 120719 { 20719 | 1.000 }1620/{ 0.193 | 1.000 310.1931 1.000 |2 357710.1931 1.000 |1
8 | 30780 | 30780 | 1.000 |2110] 0.151 | 1.091 1]0.151 | 1.091 {2 12400]0.198| 1.000 |1
9 | 44979 | 45005 | 1.000 | 2250 0.251 | 1.034 24]10.264 | 1.007 |1 481]0.264 | 1.007 |1
10 | 37165 { 37165]| 1.000 |2380] 0.088 | 1.058 117]0.088| 1.058 |1 16080]0.223 | 1.000 |1
11 | 25078 | 25078 | 1.000 |1450] 0.404 | 1.056 2210.404| 1.056 |1 2210.4041 1.056 |1
12 | 42255 | 42255 | 1.000 |2370] 0.211 | 1.083 3]10.211] 1.083 |1 6076{0.343| 1.000 |1
13 | 36295 | 36295 | 1.000 |2690] 0.069 | 1.169 176]10.091{ 1.002 {2] 165240|0.092] 1.000 |1
14 | 47888 | 47888 | 1.000 [2750] 0.183 | 1.029 46{0.183| 1.029 [1]| 97403]0.200| 1.000 {1
15 | 20819 | 20819 | 1.000 11200} 0.293 | 1.322 210293 1.322 |1 42102961 1.322 |1
16127112 [27112 | 1.000 |1470] 0.262 | 1.616 1410.262 | 1.616 |1 240|0442) 1.286 |1
17| 28117 28117 | 1.000 |1930] 0.151 | 1.037 32/0.194| 1.034 {1] 33196[0.293| 1.000 |1
18 | 45750 | 45847 | 1.002 [2750] 0.177 | 1.098 65[0.182| 1.093 [1]| 93015]0.529(1.024 |1
19 | 42956 | 42956 | 1.000 |28901 0.206 | 1.000 13710.2061 1.000 }1] 53215]/0.207] 1.000 |1
20 | 38927 | 39624 | 1.017]2270] 0.205 | 1.023 121 0.205] 1.023 |1 3905 0.218] 1.000 | 1
21| 16583 | 16583 | 1.000 | 940 | 0.248 | 1.015 29]10.2563| 1.010 |1 874]0.266 | 1.000 |1
22 | 48874 | 49362 | 1.010 [2730] 0.231 | 1.278 110/ 0.240| 1.273 |2 3036[0.307] 1.113 |1
23 [40517 | 41837 | 1.082 {2930] 0.257 | 1.057 8310.288 1 1.040 |1 42551 0.316) 1.000 |1
24 | 17359 | 17359 | 1.000 |1450] 0.182 | 1.885 1161 0.483| 1.000 |1 116/ 0.483 | 1.000 |1
25133113 | 33940 | 1.025 {1940| 0.093 | 1.155 42[0.098| 1.146 [1]| 47376}0.098(1.146 [1
26 | 46833 | 48153 | 1.028 |3350] 0.223 | 1.113 5910.249 | 1.035 |1 46981 0.273] 1.000 |1
27 | 46151 | 46151 | 1.000 {2810f 0.185 | 1.052 5410.2077 1.030 1] 61093}10.226] 1.000 |1
28 | 26846 | 27532 | 1.025 |1200] 0.152 | 2.340 92]10.152| 2.340 |1 6672]0.346] 1.148] 1
29 | 48660 | 48660 [1.0C0 [2640] 0.197 | 1.070 55[0.197| 1.070 2] 11990]0.253| 1.000 |1
30 | 43761 | 43761 | 1.0C0 [2820f 0.311 | 1.021 173]10.417 | 1.012] 1 173]0.417} 1.012 |1
31} 17426 § 17426 | 1.000 | 830 | 0.341 | 1.324 910.363] 1.254 |1 1681 0.386 | 1.230 |1
32 | 24830 | 24830 | 1.000 |1800| 0.148 | 1.307 1110.148] 1.307 |2 44501 0.303 | 1.034 |1
33 | 31939 | 32056 | 1.003 [1420] 0.319 | 1.118 93[(0.336 | 1.116 |1 93{0.336] 1.116 |1
34133503 | 33774 | 1.008 {1970 0.196 | 1.050 101 0.196] 1.050 |1 59951 0.324 1 1.030 |1
35 [37968 | 37976 | 1.000 {1660| 0.203 | 1.189 610.208) 1.184 |1 85810.3256] 1.058 |1
36 | 34662 | 34670 | 1.000 [1730{ 0.190 | 1.079 110.190] 1.079 | 2 4950] 0.350 | 1.000 |1
37| 38677 | 38677 | 1.000 {2550| 0.061 | 1.034 6931 0.075| 1.000 |1} 288015]0.075] 1.000 |1
38 [22733 | 23430 { 1.030 [1490| 0.081 | 1.000 32]0.086| 1.000 |1 3850 0.086] 1.000 |1
39| 5276 | 5276 | 1.000 | 40 | 0.355 | 1.052 3410.419] 1.000 |1 3410.419] 1.000 |1
40] 15409 | 15409 | 1.000 { 840 | 0.366 | 1.075 6[0.383| 1.053 |1 6]0.383| 1.053 |1
41 | 44838 | 45094 | 1.005 |3140]| 0.057 | 1.044 23761 0.124 | 1.002 | 2 | 298592| 0.128 | 1.000 |1
42 | 22005 | 22005] 1.000 |1670] 0.189 | 1.015 16/0.191 [1.012 |1 5427(0.239] 1.000 |1
43 | 43134 | 43506 | 1.008 {2420} 0.118 | 1.000 1110.118) 1.000 2 656110.118] 1.000 |1
44 | 31515 | 31515 | 1.000 |2270] 0.164 | 1.066 2510.164) 1.066 |1 145221 0.178 | 1.000 |1
45 | 33739 | 33741 | 1.000 [1500{ 0.183 | 1.708 50710.218] 1.639 |1 19926} 0.450 | 1.045 |1
46 | 41321 | 41634]| 1.007 |2010] 0.206 | 1.094 33{10.206] 1.094 |1 1264]0.275| 1.000 |1
47141779 | 41779] 1.000 |2350! 0.384 | 1.034 6510.384] 1.034 |2 6510.384) 1.034 |1
48 | 36063 | 36071 | 1.000 11930] 0.209 | 1.188 13]0.209) 1.188 |1 600/0.270| 1.000 |1
49 [37162 | 37859 | 1.018]2150| 0.210 | 1.077 5]10.210f 1.077 |1 5335/ 0.325] 1.000 |1
50 | 44437 | 44437] 1.000 |3300] 0.015 | 1.024 | 20200]0.027 | 1.000 | 1| 256802 0.027{ 1.000 |1

106 SUNG, PARK, LEE, DOH, AND PARK
Table 1. Continued
CONVPATH(S = 1) CONVPATH(§ = 0.5) CONVPATH(J = 0)
pairs | B/CP | CP/SCP | C | pairs | B/CP| CP/SCP |C| pairs | B/CP | CP/SCP | C
1| 349236 | 0.198 | 1.000 | 1 | 637599 | 0.198 1.000 |3 637599 | 0.198 1.000 {3
2| 851107 | 0.366 | 1.000 | 1 | 457828 | 0.366 1.000 | 3| 457828 | 0.366 1.000 |3
3 12403 | 0.571 | 1.000 | 1 | 162590 | 0.571 1.000 | 1| 243760 | 0.571 1.000 |3
4| 272626 | 0.147 | 1.000 | 1 | 552680 | 0.147 1.000 | 3| 552680 | 0.147 1.000 | 3
5 68992 | 0.211 [1.000 | 1 97980 | 0.211 1.000 | 3| 97980 | 0.211 1.000 |3
6| 493190 | 0.296 | 1.000 | 1| 669130 | 0.296 1.000 | 3| 669130 | 0.296 1.000 | 3
7 28892 | 0.193 | 1.000 | 1 | 212058 | 0.193 1.000 [1] 275552 (| 0.193 1.000 | 3
8| 119085 | 0.198 | 1.000 | 1 | 438075 | 0.198 1.000 | 3| 438075 | 0.198 1.000 | 8
9| 125800 | 0.381 [1.000 | 1 | 134568 | 0.381 1.000 | 3| 134568 | 0.381 1.000 | 3
10| 145080 | 0.223 | 1.000 | 1 [406026 | 0.223 1.000 | 3| 406026 | 0.223 1.000 | 3
11 8249 | 0.434 | 1.000 |1 81190 | 0.434 1.000 | 1| 193887 | 0.434 1.000 | 3
12| 100864 | 0.343 | 1.000 | 1 | 445936 | 0.343 1.000 | 1| 592662 | 0.343 1.000 | 3
13| 648810 | 0.092 | 1.000 | 3 | 648810 | 0.092 1.000 | 3| 648810 | 0.092 1.000 |3
14| 701250 | 0.200 | 1.000 | 1 ! 959418 | 0.200 1.000 | 3| 959418 | 0.200 1.000 |3
15 4158 | 0.613 | 1.000 | 1 25676 | 0.613 1.000 |1 40128 | 0.613 1.000 |3
16| 25454 | 0.678 | 1.012 | 1 | 159528 | 0.692 1.000 | 1| 215201 | 0.692 1.000 | 3
17] 230910 | 0.293 | 1.000 | 1 | 376128 [0.293 1.000 | 3] 376128 | 0.293 1.000 | 3
18| 461686 | 0.647 | 1.000 | 1 | 893418 | 0.647 1.000 | 1| 919240 | 0.647 1.000 |3
19| 449228 | 0.207 | 1.000 | 1 | 746327 | 0.207 1.000 | 3| 746327 | 0.207 1.000 | 3
20| 74520 [0.218 | 1.000 | 1 [220459 | 0.218 1.000 | 3| 220459 | 0.218 1.000 |3
21 8722 | 0.266 | 1.000 |1 30336 | 0.266 1.000 |1 35700 | 0.266 | 1.000 |3
22| 51205 | 0.356 | 1.000 | 1 | 201804 | 0.356 1.000 [1| 323736 | 0.356 1.000 |3
23| 59220 | 0.316 | 1.000 | 1 | 413284 | 0.316 1.000 | 3| 413284 | 0.316 1.000 |3
24 2358 | 0.484 | 1.000 | 1 46781 | 0.484 1.000 |1 96383 | 0.484 1.000 {3
25| 424473 | 0.654 | 1.013 | 1 | 733392 | 0.679 1.000 | 3| 733392 | 0.679 1.000 | 3
26| 67925 | 0273 | 1.000 | 1 | 264355 | 0.273 1.000 | 1| 433068 | 0.273 1.000 |3
27| 631400 [0.226 | 1.000 | 1 [911976 | 0.226 1.000 | 3| 911976 | 0.226 1.000 |3
28| 80969 | 0.907 | 1.000 {1 86829 | 0.909 1.000 | 3| 86829 | 0.909 1.000 | 3|
29| 148680 | 0.253 | 1.000 | 1 | 483538 | 0.253 1.000 | 3| 483538 | 0.253 1.000 | 3|
30| 251563 | 0.492 | 1.000 | 1 | 497424 | 0.492 1.000 | 1| 680525 | 0.492 1.000 |3
31 4635 | 0.567 | 1.000 | 1 18624 | 0.567 1.000 |1 22848 | 0.567 1.000 |3
32| 98523 | 0.370 | 1.000 | 1 | 347310 | 0.370 1.000 | 3| 347310 | 0.370 1.000 |3
33| 91869 | 0.700 | 1.007 | 1 | 201310 | 0.722 1.000 | 3] 201310 | 0.722 1.000 |3
34| 77688 | 0.507 | 1.000 | 1 | 202288 | 0.507 1.000 | 3| 202288 | 0.507 1.000 |3
35] 24009 | 0.445 | 1.000 | 1 | 151998 | 0.445 1.000 | 3| 151998 | 0.445 1.000 |3
36| 47432 | 0.350 | 1.000 |1 70200 | 0.350 1.000 |3 70200 | 0.350 1.000 |3
37| 620740 | 0.075 | 1.000 | 1 | 916426 | 0.075 1.000 | 3] 916426 | 0.075 1.000 |3
38| 26112 | 0.08 | 1.000 | 1 77035 | 0.086 1.000 |3 77035 | 0.086 1.000 | 3
39 2736 | 0.421 | 1.000 |1 10324 | 0.421 1.000 |1 39552 | 0.421 1.000 |3
40 1230 | 0.514 | 1.000 [1 13950 | 0.514 1.000 |1 22050 | 0.514 1.000 | 3
41| 652188 | 0.128 | 1.000 | 1 | 765094 | 0.128 1.000 | 3| 765094 | 0.128 1.000 |3
421 48790 | 0.239 | 1.000 | 1 | 124764 | 0.239 1.000 | 1] 159317 | 0.239 1.000 |3
43! 189980 | 0.118 | 1.000 | 1 | 885920 | 0.118 1.000 | 3| 885920 | 0.118 1.000 |3
44| 196847 | 0.178 | 1.000 | 1 | 394082 | 0.178 1.000 | 3] 394082 | 0.178 1.000 | 3
45| 109056 | 0.736 | 1.000 | 1 | 223020 | 0.736 1.000 | 3| 223020 | 0.736 1.000 |3
46| 125028 | 0.275 | 1.000] 1 | 233835 | 0.275 1.000 | 3| 233835 | 0.275 1.000 | 3
47| 45588 | 0.493 | 1.000 | 1 | 362250 | 0.493 1.000 | 1] 490500 | 0.493 1.000 |3
48! 36556 | 0.270 | 1.000 | 1 | 300120 | 0.270 1.000 | 3| 300120 | 0.270 1.000 {3
49] 48530 | 0.325 | 1.000] 1 | 298285 | 0.325 1.000 | 3| 228285 | 0.325 1.000 |3
50| 578925 | 0.027 | 1.000 | 1 | 795854 | 0.027 1.000 | 3] 795854 | 0.027 1.000 | 3

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 107

6 = 9. The number of the searched pairs of entries and exits is 45, and the length
of the minor segments of the found convenient path is 0.161-times its total length.
The length of the found convenient path is 1.083-times longer than that of a
shortest convenient path, and the algorithm is terminated by the condition.
min{T;,T,} > d(q*)/(1+). Note that the number of pairs of entries and exits

searched by NEAREST algorithm is always 1, and the number of pairs of entries
and exits searched by ALL algorithm is always the same as by CONVPATH algo-
rithm with & = 0. Also, note that the convenient path found by CONVPATH with
6 = 0 is a shortest convenient path.

We make some remarks about the experimental results. First of all, we find
that there is little difference between the length of a shortest convenient path and
that of a shortest path. In 50 pairs of origins and destinations, s shortest conven-
ient path is at most 1.05-times longer than a shortest path on the average. This
implies that the hierarchical approach and the concept of convenient paths are
useful in real road networks.

Next, the experimental results show that the difference between the length of
a shortest convenient path and the length of the convenient path found by NEAR-
EST algorithm is not negligible. In the worst case, the latter is about 2.34-times

longer than the former in Table 1. It means that NEAREST algorithm, which has

been most popular so far, may fail to produce a convenient path acceptable to
drivers.

9
No c¢f pairs 40.15
t
1'/
]
1
i
[
1
[{CP-SCPY/SCP [+%
I 2 101 8
3 |3 Ny
5 05y) 8
o 1]
z N %
' &
]
i
i -10.05
t
(-]
[}
.
&
~o—o- @ L o <
0 2 4 6 8 nearest
8

Figure 5. The length of convenient paths vs the number of pairs of entries and exits

108 SUNG, PARK, LEE, DOH, AND PARK

Thirdly, CONVPATH algorithm can be a good alternative for finding a conven-
ient and nearly shortest path. In Figure 5, the one trend line, labelled by ‘(Cp-
SCP)/scP’ and graduated in the right y-axis, represents the change of the length
difference between the final path and a shortest convenient path, as the parame-
ter & changes from §=0 to § =9. After dividing the length difference between
the final convenient path and a shortest one by the length of the shortest conven-
ient path, the ratios are averaged for the 50 data in Table 1. Similar calculations
are applied to NEAREST algorithm for comparison with CONVPATH. The other trend
line, labeled by ‘No of pairs’ and graduated in the left y-axis, represents the rela-
tive number of pairs of entries and exits searched by NEAREST and CONVPATH with
6=10,0.1,...,9. Each point on the trend line implies the ratio of the average num-
ber of pairs of entries and exits searched by NEAREST or CONVPATH to the average
number of pairs searched by ALL algorithm. As shown in Figure 5, the convenient
paths found by NEAREST algorithm are on the average about 1.16-times longer
than those found by ALL algorithm. However, the convenient paths found by CON-
VPATH algorithm with § =4 are on the average about 1.09-times longer than those
found by ALL algorithm, while the average number of pairs of entries and exits
increases to about 1 percent of the average number of pairs of entries and exits
searched by ALL algorithm. When 6 =2 and § = 1.5, the convenient paths are
about 1.03-times and 1.01-times longer than those found by ALL algorithm, while
the average number of pairs of entries and exits increases to about 5 percent and
18 percent of the average number of pairs of entries and exits searched by ALL
algorithm, respectively. When & =1, CONVPATH algorithm finds shortest conven-
ient paths in 45 out of 50 data, but the average number of pairs of entries and
exits searched becomes rather large. When & is less than 0.6, the improvement in
the length of convenient paths does not seem to compensate for the increase in
the number of pairs of entries and exits. To sum up, CONVPATH algorithm with
0 =4 or 6= 2 appears to be a good alternative to find a convenient path that is
short enough to be accepted by drivers. For finding a convenient path with the
almost shortest length, CONVPATH algorithm with 6§ = 1.5 or § =1 will be a good
alternative whose computational efforts are moderate. Comparing Figure 5 with
Figure 4, the experimental results in Figure 5 are consistent with the theoretical
observation represented in Figure 4.

Finally, the termination criterion derived from inequality 8, which is repre-
sented as ‘1’ in column ‘C’ of Table 1, appears to be effective for CONVPATH algo-
rithm with § being less than about 0.6. On the other hand, when § is greater
than 0.6, the termination criterion derived from Property 4, which is represented
as ‘3", made CONVPATH algorithm terminate in most problems. Lower bounds to

ON FINDING A CONVENIENT PATH IN THE HIERARCHICAL ROAD NETWORK 109

the length of convenient paths, which are calculated by Property 3, did not work
very well in our experiment. However, this result will not preclude us from using
lower bounds to the length of convenient paths as an effective termination crite-
rion. If tight lower bounds are available from previous calculations or experience,
the termination criterion derived from inequality (11) is expected to be effective.

7. CONCLUSIONS

In this paper, we defined a convenient path that exploits the hierarchical struc-
ture of road networks, and proposed an algorithm for finding a convenient path
that is short enough to be accepted by drivers. By our experimental results, the
introduction of a convenient path turns out to be an effective method for finding a
human-oriented and nearly shortest path with a little computation.

We were concerned with the hierarchical network with two levels, but the
generalization of our results in the hierarchical network with more than two lev-
els will be worth further research. Also, the application of the proposed algorithm
to real road networks and empirical analysis of the results is an interesting topic
for future research.

REFERENCES

[1] Ahuja, R. K, T. L. Magnanti, and J. B. Orlin, Networks flows: Theory, algo-
rithms and applications, Prentice-Hall, 1993.

[2) Campbell, J. F., “Selecting routes to minimize urban travel time,” Trans-
portation Research-Part, 26B (1992), 261-274.

[3] Chou, Y.-L., H. E. Romeijn, and R. L. Smith, “Approximating shortest paths
in large-scale networks with an application to intelligent transportation
systems,” INFORMS Journal on Computing, 10 (1998), 163-179.

[4] Duckham, M. and L. Kulik, “Simpliest paths: Automated route selection for
navigation,” In W. Kuhn, M. F. Worboys, and S. Timpf(Eds), Spatial Infor-
mation Theory: Foundations of Geographic Information Science, Lecture
Notes in Computer Science, Vol.2825 (2003), 182-199, Springer, Berlin.

(6] Liu, B., “Route finding by using knowledge about the road network,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and Hu-

110

(6]

(7]

SUNG, PARK, LEE, DOH, AND PARK

mans, 27 (1997), 436-448.

Seong, M., K. Sung, and S. Park, “Finding a route in a hierarchical urban
transportation network,” Proceedings of 5th World Congress on Intelligent
Transport Systems(10.12-16, 1998), Korea.

Shapiro, J., J. Waxman, and D. Nir, “Level graphs and approximate short-
est path algorithms,” Networks, 22 (1992), 691-717.

