• 제목/요약/키워드: Hierarchical Optimization

검색결과 117건 처리시간 0.03초

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

Optimal Grade Transition with Partially Structured Model in a Slurry-Phased HDPE Reactor by Modified Hierarchical Dynamic Optimization

  • Yi, Heui-Seok;Chonghun Han;Na, Sang-Seop;Lee, Jinsuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.50.1-50
    • /
    • 2001
  • Dynamic optimization with partially structured model in a slurry-phase HDPE reactor is implemented by the modified hierarchical dynamic optimization. Optimal trajectories of MI and density of HDPE are calculated as controlled variables and optimal profiles of the concentrations of ethylene, hydrogen and comonomer are calculated as manipulated variables in dynamic optimization. MI, density, the concentrations of ethylene, hydrogen and comonomer are used as controlled variables and flow rates of ethylene, hydrogen and comonomer are sued as manipulated variables in control implementation. Two-level hierarchical method is applied in dynamic optimization to reduce computation time. In the upper level formulation ...

  • PDF

프레임 구조의 계층적 설계 해석 및 최적화 (A Hierarchical Approach for Design Analysis and Optimization of Framed Structures)

  • 황진하;이학술
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.93-102
    • /
    • 2000
  • 본 연구는 부구조화에 기초한 계층적 접근방법을 이용하여 프레임구조에 대한 설계민감도해석과 최적화를 수행한다. 이 방법의 개념적 틀은 유형의 구조계와 무형의 설계과정을 계층적으로 모델링하고 부구조화해석과 다단계최적화를 결합하는데 있다. 여기서 해석과 총합을 위한 수학적 모델은 공통의 부구조화체계와 기반위에서 설정된다. 이러한 수학적 구조적 기반위에서 모듈화된 거동해석과 민감도해석 및 최적화과정이 서로 연계되고 통합된다. 여기서 설계민감도정보는 상태공간방법으로 계산되고, 시스템단계의 활성조건과 중량비 규준을 통해 부구조들의 조율이 이루어진다. 대형프레임구조에 대한 수치 예제들을 통해 본 연구의 타당성 및 효율성과 유용성을 검증한다.

  • PDF

UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화 (Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator)

  • 김길성;최정내;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

집적회로의 새로운 계층적 배치 기법 (A New Method for Hierarchical Placement of Integrated Circuits)

  • 김청희;신현철
    • 전자공학회논문지A
    • /
    • 제30A권6호
    • /
    • pp.58-65
    • /
    • 1993
  • In this research, we developed a new algorithm for hierarchical placement of integrated circuits. For efficient placement of a large circuit, the given circuit is recursively partitioned to form a hierarchy tree and then simulated-annealing-based placement method is applied at each level of the hierarchy to find a near optimum solution. During the placemtnt, global optimization is performed at high levels of the hierarchy and local optimization is performed at low levels. When compared with conventional placement methods, the new hierarchical placement method produced favorable results.

  • PDF

적응형 계층적 공정 경쟁 기반 병렬유전자 알고리즘의 구현 및 비선형 시스템 모델링으로의 적용 (Implementation of Adaptive Hierarchical Fair Com pet ion-based Genetic Algorithms and Its Application to Nonlinear System Modeling)

  • 최정내;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.120-122
    • /
    • 2006
  • The paper concerns the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation. The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. Thestructural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

A hierarchical Bayesian model for spatial scaling method: Application to streamflow in the Great Lakes basin

  • Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.176-176
    • /
    • 2018
  • This study presents a regional, probabilistic framework for estimating streamflow via spatial scaling in the Great Lakes basin, which is the largest lake system in the world. The framework follows a two-fold strategy including (1) a quadratic-programming based optimization model a priori to explore the model structure, and (2) a time-varying hierarchical Bayesian model based on insights found in the optimization model. The proposed model is developed to explore three innovations in hierarchical modeling for reconstructing historical streamflow at ungaged sites: (1) information of physical characteristics is utilized in spatial scaling, (2) a time-varying approach is introduced based on climate information, and (3) heteroscedasticity in residual errors is considered to improve streamflow predictive distributions. The proposed model is developed and calibrated in a hierarchical Bayesian framework to pool regional information across sites and enhance regionalization skill. The model is validated in a cross-validation framework along with four simpler nested formulations and the optimization model to confirm specific hypotheses embedded in the full model structure. The nested models assume a similar hierarchical Bayesian structure to our proposed model with their own set of simplifications and omissions. Results suggest that each of three innovations improve historical out-of-sample streamflow reconstructions although these improvements vary corrsponding to each innovation. Finally, we conclude with a discussion of possible model improvements considered by additional model structure and covariates.

  • PDF

계층적 경쟁기반 병렬 유전자 알고리즘을 이용한 퍼지집합 퍼지모델의 최적화 (Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Parallel Genetic Algorithms)

  • 최정내;오성권;황형수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2097-2098
    • /
    • 2006
  • In this study, we introduce the hybrid optimization of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA). HFCGA is a kind of multi-populations of Parallel Genetic Algorithms(PGA), and it is used for structure optimization and parameter identification of fuzzy set model. It concerns the fuzzy model-related parameters as the number of input variables, a collection of specific subset of input variables, the number of membership functions, and the apexes of the membership function. In the hybrid optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods.

  • PDF

계층적 최적화 기법을 이용한 강의 수질오염 제어 (River Pollution Control Using Hierarchical Optimization Technique)

  • 김경연;감상규
    • 한국환경과학회지
    • /
    • 제4권1호
    • /
    • pp.71-80
    • /
    • 1995
  • 생화학적 산소요구량(BOD) 및 용존 산소(DO)을 이용하여 여러구간이 있는 강에 대한 이산 상태공간모델은 설정하였다. 상호작용 예측방법을 이용하여, 상태변수에 시간지연이 존재하는 대규모 시스템에 적용가능한 계층적 최적화 방법을 기술하였다. 정상상태 오차를 해석적으로 구하고, 상수 목표티 추적문제에 있어서 정상상태 오차가 발생하지 않을 필요충분조겆을 규명하였다. 수질오염 모델에 대한 컴퓨터 모사를 통하여 기술한 알고리듬의 타당성을 확인하였다.

  • PDF

계층적 설계에서의 타이밍 최적화를 위한 지능형 논리합성 알고리즘 (Intelligent Logic Synthesis Algorithm for Timing Optimization In Hierarchical Design)

  • 이대희;양세양
    • 한국정보처리학회논문지
    • /
    • 제6권6호
    • /
    • pp.1635-1645
    • /
    • 1999
  • 본 논문에서는 아키텍춰-수준에서 타이밍 최적화를 효과적으로 수행하기 위한 지능적인 재합성 기술에 대하여 연구하였다. 구체적으로는 아키텍춰-수준에서 계층 구조를 가지는 회로 구조에 기존의 조합적 타이밍최적화 방법을 적용함으로써 발생하는 문제점을 해소시킬 수 있는 방법을 제시하였다. 접근 방법은 우선 설계자가 설계한 계층 구조를 유지시키는 방법으로 기존의 retiming 방법과 peripheral retiming 방법을 응용하여 서브컴퍼넌트 내 조합논리회로 부분을 확대하는 방법을 이용한다. 이와 같은 방법이 좋은 결과를 가져오지 못할 때 다른 접근 방법으로서 기존의 서브컴퍼넌트들로 이루어지는 경제를 새로운 경계를 가지는 새로운 서브컴퍼넌트들로 변형시켜 서브컴퍼넌트들 각각의 독립적인 타이밍최적화로 전체 회로에 대한 타이밍최적화를 이끌어 낼 수 있도록 한다. 본 논문은 아키텍춰-수준에서 계층적 구조를 가지는 회로에 대한 새로운 접근을 시도하고 있는데, 회로가 크고 복잡해짐에 따라 설계자가 실제 회로를 대부분 서브컴퍼넌트화하여 계층적 구조를 가지도록 설계하는 것이 일반적인 상황에서 이의 효능성을 실험적으로 입증할 수 있다.

  • PDF