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Abstract

A discrete state space model for a multiple-reach river system is formulated using the
dynamics of biochemical oxygen demand(BOD) and dissolved oxygen(DQ). A hierarchical
optimization technique, which is applicable to large-scale systems with time-delays in
states, is also described to control stream quality in a river as an optimal manner based
on the interaction prediction method. The steady state tracking error of the proposed
method is determined analytically and a necessary and sufficient condition on which a
constant target tracking problem has zero steady-state error is derived. Computer
simulations for the river pollution model illustrate the algorithm.
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1. Introduction

In recent years there has been shown an
increasing interest in the modeling and control
of water quality in a river. Many parameters
can be used to represent water quality in a
stream, but it is widely known that the BOD
and DO
universally  accepted criteria[Haimes and
Macko, 1973; Singh, 1975]. In particular, the
dynamics of DO concentration is dependent on
that of BOD concentration. If the DO falls
below certain levels or the BOD rises above

concentrations are the most

certain levels, the ecological balance of the
river is often broken down. Therefore, it is
necessary to control the BOD and DO levels

to fluctuate between predefined bands while at
the same time minimizing the cost of
treatment in an optimal manner.

The state space model for the river with
many polluters becomes large-scale time-delay
systems(LSTD)[Singh et al., 1981]. A considerabe
research has been done on the optimal control
of time-delay(TD) systems. They can be
categorized into two classes at large. One
approach which results in a suboptimal control
law is based on the concept of optimal control
sensitivity[Jamshidi and Zavarei, 1972]. In this
approach, the control law is expanded into a
MacLaurin series in some parameters. The
other one is to convert the TD problem to a
nondelay problem[Zavarei, 1980].
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But these approaches are prohibitive to the
LSTD systems a river pollution
problem due to their computational burden.

To get around computational difficulties
which are associated with computational time
and storage space, Tamura[Tamura, 1974] has
proposed a multi-level method for LSTD
systems by decomposition and coordination
technique. It should be noted that Tamura’'s
method uses a linear search technique for the
upper-level gradient algorithm. Hence the
convergence rate is comparatively slow. Singh
et al[Singh, 1976, Singh et al, 1981] have
proposed a promising hierarchical algorithm by
using interaction prediction method. This
algorithm is found to be superior to other
multi-level methods for a certain class of
optimization problems. On the upper-level, it has
more rapid convergence rate and fewer
operations than other coordination rules such as
linear search algorithm. But it also has a
disadvantage that dimension of the given
system has to be increased to transform the TD
system into nondelay system.

In this paper, we describe an efficient
hierarchical optimal control method for the

such as

transformed into a regulator problem with
constant input by introducing a predetermined
nominal input to the performance index. The
steady-state tracking error for the method is
determined analytically. Also, a necessary and
sufficient condition for zero steady-state error is
derived.

2. Problem Formulation

A  schematic diagram of a rver with
multiple sewage work is selected as shown in
Fig.1{Tamura, 1974].

In this Figure, the
followings.

symbols mean as

zi(k) ; concentration of BOD in the ith reach
at time k(mg/l)

qi(k) ; concentration of DO in the ith reach
at time k(mg/!)

«f ; saturation concentration of DO in the
ith reach(mg/!)

si(k) ; concentration of BOD in the effluent
dischared to the ith reach at time k
before treatment(mg/l)

LSTD systems based on the interaction pi(k) ; concentration of DO in the effluent
prediction method without increasing the system dischared to the ith reach at time
dimension. The optimal tracking problem is k(mg/l)
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Fig.l. A schematic diagram of river system
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mi(k) ; volume of the effluent discharge in
the ith reach during the time between
k and k+1(m")

&i(k) ; fraction of BOD removed from the
effluent in the ith reach during the
time between k and k+1

Qi(k) ; volume of water that flows from the
ith reach to the (i+1)th reach during
the time between k and k+1(m®

Vi ; volume of water in the ith reach(m®)

(k) ; removal of DO from the ith reach by
the effects of photosynthesis and
respiration during the time between k
and k+1(mg/l)

£ik) ; addition of DO in the ith reach by the
aeration(mg/l) during the time
between k and k+1

Then, from the mass balance considerations
[Kraijenhoff and Moll, 1986], we derive the
following equations that govern the evolution in
time of the BOD and DO concentrations.

BOD; z{k+1)—zLk)
= ~(I,‘Zi(k) + —Qi—i,‘_(“klz,'-] (1)
- o B 2

Vi
DO; qlk+1)—qdl) = —azlk)
+ Bl ai—adP] + Qi_Tli(k)q
- Qiifl/gilqz'(k)—ﬂi(k) + 5{(1?) (2)
p{Rm{k)

+ V.
(i=1,2,,n, k=1,2, k—1)

i—1

where @ and B; are an increasing rate of
BOD and DO in the ith reach, respectively.
From above equations, it is noted that the
dynamics of DO is dependent on that of BOD.

In egs.(1) and (2) the terms zi-1 and g1 can
be written as follows by taking into account
the dispersion of BOD and DO concentrations.

o

Z;= )glaj z;_)(k—j) (3a)
& "

Q1= ).gla;‘ ) (3b)

> =1 (30)

=

The distributed delay model, eq.(3) shows
that for j=1,2,---m, fraction a; of BOD and DO
in the (i-1)th reach at time (k-6;) arrives in
the ith reach at time k. This means that the
dispersion delays are distributed in time
between 61 and G m.

Let's define the state and the control
vectors as:

2,(B) g (D] T

wWh) = [ (B ey(B) e )] T  (4b)

Then the following state space model can be
obtained.

He+]) = Apdh) + Apk=1) + - (5
+ Ag,x(k—06,) + Bulb) + ¢

with initial conditions
wWB = o (B, — 0, <k<0 (5

wk) = o B, — 0,< k<0 (5

Without loss of generality, we assumed that
the matrices A, B and c in eq.(5a) are constant.
In (5a), Ai(i=0,1,"0)ER™™ is a system
matrix, BER™ is an input matrix, c€ R™ is
a constant input vector, 6x is a delay in states.
Let's define the performance index for the
optimal tracking control problem as

2

k=1
J=% % 1xR) =z o+ 1B " ?e 6)

where QE R™® is a state weighting matrix, R
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ER™" is an input weighting matrix, x°€ R*™
is a constant desired or reference value of state
vector and u"€ R™ is a predetermined nominal
control input, which will be discussed more
detail in the next section. It is assumed that Q
and R are positive semi-definite and positive
definite block diagonal matrix, respectively.
Here, the optimization problem is to find a
control law which causes the state vector of the
system eq.(5a) to follow a desired value that
minimizes the performance index eq.(6).
Define a new state and control vector as

z2(E) = x(B) — «° (7a)
(k) = ulk) — u" (7b)

Then the above optimal tracking problem
can be transformed into a regulator problem
with a constant input which is expressed as

+Agz(k—86,)+Bu(k)+c’

2= (B—x% —0,< k<0 (&)

b)=9 (B—u", —0, < k<0 (&)
]=%§0k,—1{ hz(R) I é+ It (k)N 12Q } 9

where

8.
= X A,—1I,] x*+Bu"+c. (10)

It is prohibitive to use the centralized
optimal control method to obtain the optimal
solution for the above LSTD system due to
computational burden. To overcome the
computational  difficulties  associated  with
computational time and storage space, we
develope a hierarchical technique based on the
interaction prediction method.

3. Hierarchical Optimization

The above centralized optimal regulator
problem for the LSTD system is decomposed
into smaller subproblems to obtain the optimal
solution in a hierarchical manner. The i-th
subproblem is expressed as

2 (k+1)= Az B +Bw k) +cf+h(k) (lla)

N 8,
hi(k) = (i#1§1=0>{1z=:01"’]2i(k_1)}

N (11b)

z{B =, (B—xl, -6, < k<0 ()

vk =9, (B)—ul, —0, < k<0 (11d)

k-1

J=% X {u 2B 1 51 + ok I I%i} 12)

where hi(k)€ R consists of interaction inputs
which come in from the other subsystems and
time-delayed states of the i-th subsystem, L&
R"™; is a coupling matrix of states, M€ R""*™;
is a coupling matrix of control inputs, N is the

number of the interconnected subsystems which

N

comprise the overall system, Zl n,=2n and

N
'21 m;= n.
i=

Now, we use the interaction prediction
method which is attractive due to simple
upper-level algorithm and fast convergence rate.
The interaction prediction method is essentially
composed of obtaining optimal solutions of
decomposed subproblems at lower-level and of
updating the coordination vector to force the
independent lower-level solutions to the optimal
solution of the overall system.

First, consider the lower-level problem to
find the optimal solutions for the decomposed
subproblems. The Hamiltonian function for the
i-th sub-system can be written as
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H= %1200 2 +su0m & +r T onh

- <,-,n'§~:1=n) [ 12"07?(k+1)Li"2'(k)]

(13)
LA
—1_4‘?]7]- (B Mv k)

+a TG D[ AR +BiwdB +c +h(R)]
where  7i{(kER"" and q(KERY are
Lagrange multiplier and costate vector of i-th
subsystem, respectively. From eq.(13) the

necessary conditions for optimality are obtained
as

2(k+ D= Az B+ BB +c L +hik (142)
20 = 2, (0)—x 4 (14)
oW ==R[ Bladk+) = ZMinh)] (140
7{R)=0,(k=k) (14d)

adk) = Q,»zi(/e)tAz‘qi(k+1) (14¢)
N x
- 2: :: 125 Yj(k4—n

(7*1if1=0)1=0

Qi(kf) =0 (14f)

Next, consider the upper-level problem in
order to optimize the overall system by
coordinating the lower-level solutions. For this
purpose, the additively separable Lagrangian
function can be written as

N &
L= 2%~
i=14£=0
[1/2 2B 1 2 +% 0 u,(k) 1 12€
+ (R hik
N 8
- X | ZLaZk-D
(i if1=0) =0
N (15)
+ ]Z:I?’,T(k)Miivi(k)
+ qT(k+1)

[ AR +Bv(k)
+cf+h)—2z(k+1)] }

Then the coordination rule at the upper-level
from iteration L to L+1 is obtained by

ri k)

)
(16)
—aik+1) L

N 8, N
o Fico|, Rbuakb=D] + 2o h

Now, a step~by-step computational
procedure to obtain optimal control law for the
LSTD system is summarized.

step 1. At the upper-level, set L=1 and
predict initial values for 7ik) and hi(k)i =
12,...N, k=01,..ke-1). Then pass them down to
the lower-level.

step 2¢ At the lower-level, solve the
independent necessary conditions for optimality
egs.(14a)-(14f) by using xi(k) and hi(k) passed
from upper-level. Then send z(k), vikk) and
ai(k)i=1,2,...N, k=01,...ki-1) to the upper-level.

step 3 At the upper-level, check the
convergence of eq.(16). ie., whether their errors
are within the predetermined error bounds, . If
not, update 7i(k) and hi(k) from eq.(16) by using
zi(k), wvikk) and q(k) passed from the
lower-level. Then set L=L+1 and go to step 2.

step 4: If step 3 is converged, calculate the
optimal control law and state trajectory from
egs.(7a) and (7b), respectively.

4. Steady-State Considerations

If the final time ks is large enough for the
system to reach a steady-state, the following
Theorem can be applied.

Theorem 1: If the proposed hierarchical
algorithm in section 3 for the optimal control of

the LSTD system egs.(5) and (6) converges
9,
and the inverse of [ I,— 120 Al] exists, the

steady-state tracking error is given by
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[
ess=——{l,,—( >3 A,)+B RBT
=0 a7

[ ga] g

Proof: If the algorithm converges we obtain
the followings from (16)

vk = —q(kt]) (18a)

N 8,
hik) = (i*i§1=0)[ EoLiﬂz"(k_l)] (18b)
Substituting eqs.(18a) and (18b) into the

necessary conditions for optimality egs.(14a)-
(14f), we obtain the following integrated
expressions:

8,
2 k+1)= Eo Az(k—D+Buk)+c& (19

AW =—R"'BTg(k+1) (20
b,
«(B)= QB+ X Alqlk+I+]) @

Since z(k), v(k) and q(k) are constant vectors
at steady-state, we have

(A
2,= l‘go Az;+B vtk (22)
v,=—R"'BTq, (23)
A
qs= st+ lgo AiI‘Qs (24)

where the subscript s denotes steady-state.
Substituting egs.(23) and (24) into eq.(22) we
obtain

[ I,— ﬁ:oAl] Z,=
-l BRTB] _ (25)
[ In—lzi’:oA{] Qzo+c”

e =x"—x, (26)

Then, taking into account egs.(7a) and (26), we
obtain eq.(17) from eq.(25). This completes the
proof.

Remark 1:

(a) It is noted that the quantity inside the
braces on the right-hand side of eq.(17) is
nonsingular if the inverse of

[ Inl o — A, exists.

(b) Theorem 1 reveals that the steady-state
tracking error can be obtained from the state
equation and the performance index without
solving the optimization problem.

(c) It is noted that an increase in 1Q1 or
a decrease in (RN reduces the steady-state
tracking error.

(d) (17) can be rearranged as

8, -1
BR! B’[ In— ZAIT] Qe

1=0 , 27
= —c”—[ In—lzjoA,] €

The above equation shows that when allowable
steady-state error and the input weighting
matrix are given, the state weighting matrix
can be determined if the right-hand side vector
of eq.(27) belongs to the column space of the
left-hand side matrix of eq.(27) except Q ess,

Remark 2:

(a) From Theorem 1 and eq.(10), the
necessary and sufficient condition for zero
steady-state tracking error is that a vector

[
[ In—lz_lo Al] x?—c belongs to the column

space of a matrix B.

(b) The steady-state tracking error does not
exist regardless of Q and R if the necessary
and sufficient condition for zero steady-state
tracking error is satisfied. In this case, if B has
full column rank the nominal control input u" is
obtained by

u"=[ B'B} _IBT{[ In— éoAll xd—c] (28)
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(c) If the necessary and sufficient condition
is not satisfied, the nominal control input
obtained from eq.(28) is a approximate
least-square solution for ¢™=0. In this case the
steady-state tracking error is given as

e, = {In—(éoAl)
+B R“B’[ I~ éouA{] _IQ]_l .
{[ m—B B'Bl ~'B7

[ In— é}OA]] blxd—c] }

if B has full column rank.

5. Numerical Example

To illustrate the algorithm, river pollution
model of River Cam outside Cambridge,
EnglandiTamura 1974] is considered. The
numerical values for the model are N=3, ni=2,
mi=1(i=1,2,3) and 6x=2,

ag=] OB 0

—0.25 0.27
B,~,-=[ ~ ] G=1,2 3
G = [ 4.5 6-15] ’

C2=C3=[2 265],
L= L= Loy=Ly=0,
Lin=Lan=Lg=Lyp=Lym=Ly=Ly=0,

Lyp=Lyn=Lin=Lyp=Lyy=Lajy=Lap=0,

Table 1. Summary of the simulation resuits.

Loup = Law = [ 80825 8:0825 ]
Lo = La = [ 0% g ]
Lap = Lo = [ (0)0825 8:0825 ]

We have chosen that Qi=l;, Ri=100G=1,23), ¢
=10° and k=30 which is large enough for the
system to reach steady-state. Simulations are
carried out for the following two cases.

Case 1:The necessary and sufficient
condition for zero steady-state tracking error is
satisfied; x1'=[416 701" and x'=x"=[556
70]". In this case, initial conditions are given
as; xik) = [416 701", %K) = xak) = (556
707 (k=-2,-1), x(0) =[100 7.0]" and x2(0) =
x3(0) = [656 7.0]".

Case 2:The necessary and sufficient
condition for zero steady-state tracking is not
satisfied; x°=x" =xs"=[50 7.0]". In this case,
initial conditions are given as; xi(k) = x2(k) =
x® =60 70T k=-2-1), x(0)=[100 70/
and x2(0) =x3(0) =[50 7.0]"

The simulation results for the proposed
method are summarized in Table 1.

It is important to note that the steady-state
tracking error resulted from the proposed
hierarchical control algorithm is consistent with
the Theorem 1. Therefore we can obtain the
steady-state tracking error from the  given
state equation and performance index without
solving the optimization problem. Note also that
the steady-state tracking error in case 1 is zero
irrespective of weighting matrices.

iteration .

number steady-state tracking error
Case 1 15 [ 00 0.0 0.0 0.0 0.0 00 1"
Case 2 15 [ 00015 02872 -0.0031 0.0256 -0.0052 -0.1707 1° -
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Fig. 2. Optimal Trajectories of state variables and control inputs

Also, the optimal of state
variables and control inputs for the case 1 are
shown in Fig.2. Fig.2 shows that the states and
control inputs represent fairly good transient
responses. And, it is noted that steady-state
responses are agreed with the Theorem 1.

trajectories

6. Conclusions

A large-scale discrete-time state space model
for a multiple-reach river system is obtained by
putting BOD and DO concentrations as state

variables. A hierarchical optimal control
algorithm which is applicable to the river
pollution model is developed wusing the

interaction prediction method. The steady-state
tracking error is determined analytically and a

condition for

sufficient

necessary and
steady -state error is derived.
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References

Haimes, Y.Y. and D. Macko, 1973, Hierarchical
Structures Water  Resources
Systems Management, IEEE Trans.
Syst, Man and Cybern, SMC3,
396-402.

Jamshidi, M. and M.M.Zavarei, 1972, Suboptimal
Design of Linear Control System with
Time-Delay, Proc. IEEE, 30, 73-88.

Kraijenhoff, D.A. and JR. Moll, 1986, River
Flow Modelling and Forecasting,
D.Reidel Pub. Co., 229-235.

Singh, M.G., 1975, River Pollution Control, Int.

in

_.78..



River Pollution Control Using Hierarchical Optimization Technique 9

J. Systems Sci., 6, 9-21. Tamura, H., 1974, A Discrete Dynamic Model

Singh, M.G., 1976, A Feedback Solution for the
Large Infinite Stage Discrete Regulator
and Servomechanism Problem, Elect.
Engng., 3, 93-99.
Singh, M.G.,, M.S. Mahmoud and A.Titli, 1981,
A Survey of Recent Developments in Zavarei,
Hierarchical Optimisation and Control,
IFAC Contr. Sci. and Tech., 1271-1278.

with Distributed Transport Delays and
Its  Hierarchical Optimization for
Preserving Stream Quality, IEEE
Trans. Syst, Man, Cybern., SMC4,
424-431.

MM, 1980, Near Optimum Design of
Nonstationary Linear Systems with
State and  Control  Delays, J.
Opt. Theory and Appli., 30, 73-88.

ASH X% JjgE 0|28 2o £E2Y HH

ARA-FRW
Azgetn 3o A3, Ao I8y E s

(1994 64 109 H¥)

A8sty A2 T7FH(BOD) B §& HAFHDO)E o &3ld A7t Ae Zd g

ol AHErRdE 4RGN 45AE AU

o] g3, el AITA Ao

EAste R A2 A&t AFH HHE PHE rledud ALY A s
qANHez Fax, 45 FHA FHEA AN FHAH 37t A FE Be
FE2IE A9 #2329 29 AP AFH ZAE FIA Ve ¢ndE

B34E U3

_79_



