시계열의 예측에 대한 문제는 오랫동안 많은 연구자들의 연구의 대상이었으며 예측을 위한 많은 방법이 제안되었다. 본 논문에서는 은닉 마코프 모델(Hidden Markov Model)과 우도(likelihood)를 사용한 유사도 검색을 통하여 향후 시계열 데이터의 운행 방향을 예측하는 방법을 제안한다. 이전에 기록된 시계열 데이터에서 질의 시퀸스(sequence)와 유사한 부분을 검색하고 유사 부분의 서브 시퀸스를 사용하여 시계열을 예측하는 방법이다. 먼저 주어진 질의 시퀸스에 대한 은닉 마코프 모델을 작성한다. 그리고 시계열 데이터에서 순차적으로 일정 길이의 서브 시퀸스를 추출하고 추출된 서브 시퀸스와 작성된 은닉 마코프 모델과의 우도를 계산한다. 시계열 데이터로부터 추출된 서브 시퀸스 중에서 우도가 가장 높은 시퀸스를 유사 시퀸스로 결정하고 결정된 부분 이후의 값을 추출하여 질의 시퀸스 이후의 예측 값을 추정한다. 실험 결과 예측 값과 실제 값이 상당한 유사성을 나타내었다. 제안된 방법의 유효성은 코스피(KOSPI) 종합주가지수를 대상으로 실험하여 검증한다.
본 논문은 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터베이스 안에서 누구인지를 식별하는 얼굴인식 방법을 제안하였으며, 또한 HMM과 KLT를 이용한 얼굴인식 알고리즘의 수행결과를 비교, 분석하였다. 얼굴인식 방법으로 측정벡터는 직교변환(Karhuman Loevs Trans-form : KLT)의 상관관계를 이용하여 얻은 HMM의 정역학특성을 사용하여 HMM 기존의 얼굴인식 방법에서 인식률을 개선하였으며, 실험결과로써 조명의 조건에 따른 여러 가지 복잡한 주변 상황변화에서도 제안된 방식의 효율성을 입증할 수 있었다.
In recent years, pattern recognition methods have been widely used by many researchers for fault diagnoses of mechanical systems. The soundness of a mechanical system can be checked by analyzing the variation of the system vibration characteristic along with a pattern recognition method. Recently, the hidden Markov model has been widely used as a pattern recognition method in various fields. In this paper, the hidden Markov model is employed for the fault diagnosis of the mass unbalance of a rotating system. Mass unbalance is one of the critical faults in the rotating system. A procedure to identity the location and size of the mass unbalance is proposed and the accuracy of the procedure is validated through experiment.
본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM) 이용한 얼굴인식 알고리즘을 제안 한다. 입력 영상은 이산웨이블렛을 기반으로 한 다행상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.
본 논문에서는 HMM(Hidden Markov Models)에서 문제점이 되는 개인차에의한 변동을 흡수하고, 적은 학습 데이타로서 인식률을 향상시키기 위하여 신경회로망을 이용한 NN-HMM(Neural Network Hidden Makov Models)에 의해 한국어 인식에 관하여 연구하였다. 이 방법은 HMM과 신경회로망의 출력을 각각 독립적인 인식값으로 가정하여 두 시스템의 확률곱으로 서로 보정되어 최대 인식확률의 음성모델을 인식하는 음성인식 시스템이다. 본 방법의 타당성을 평가하기 위하여 남, 여화자가 28개의 DDD 지역명을 발성한 음성데이타로 실험한 결과, 이산분포 HMM에 의한 방법에서는 91[%], 신경회로망에 의한 방법에서는 89[%], 제안된 방법에서는 95[%]의 향상된 인식률을 얻으므로써 인식성능의 우수함을 확인하였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제13권3호
/
pp.164-170
/
2013
Recent years have been higher demands for automatic speech recognition (ASR) systems that are able to operate robustly in an acoustically noisy environment. This paper proposes an improved product hidden markov model (HMM) used for bimodal speech recognition. A two-dimensional training model is built based on dependently trained audio-HMM and visual-HMM, reflecting the asynchronous characteristics of the audio and video streams. A weight coefficient is introduced to adjust the weight of the video and audio streams automatically according to differences in the noise environment. Experimental results show that compared with other bimodal speech recognition approaches, this approach obtains better speech recognition performance.
Hidden Markov models(HMM's) have been known to be useful representation for speech signal and are used in a wide variety of speech systems. For speech recognition applications, it is desirable to incorporate durational information of states in model which correspond to phonetic duration of speech segments. In this paper we propose duration-dependent HMM's that include durational information of states appropriately for the left-to-right model. Reestimation formulae for the parameters of the proposed model are derived and their convergence is verified. Finally, the performance of the proposed models is verified by applying to an isolated word, speaker independent speech recognition system.
회귀에 기인하는 부정맥의 발생 기전 분석을 위해 심장 전도 계통의 변경된 Hidden Markov Model을 세우고 모의 실험을 하였다. 먼저, 심근의 탈분극 시간과 전도 속도, 탈분극의 자율성(autonomicity)을 매개 변수로 한 모의 실험을 통해 시간적인 심장 진도와 피에 따른 심전도 결과를 얻었다. 결과는 연속된 심전도 파형과 그 발생 시간이었다. 매개변수는 율동의 속도, 각 파형간의 간격, 이상 파형의 발생 빈도등을 결정한다. 정상 동율격 및 심실상성/심실성 정맥, 심방/심실 조기 박동등을 모의 실험할 수 있는 매개변수의 세트를 구하였다. 다음으로 Hidden Markov Model의 확률적 추정 방법을 응용하여 심전도 결과를 가지고 최적 확률의 심장 전도 경로를 추정하였다. 변경된 추정 방법을 이용하여, 모의 실험한 전도경로와 추정한 경로가 유사함을 확인하였다.
A musical key is a fundamental concept in Western music theory. It is a collective characterization of pitches and chords that together create a musical perception of the entire piece. It is based on a group of pitches in a scale with which a music is constructed. Each key specifies the set of seven primary chromatic notes that are used out of the twelve possible notes. This paper presents a method that identifies the key of a song using Hidden Markov Models given a sequence of chroma features. Given an input song, a sequence of chroma features are computed. It is then classified into one of the 24 keys using a discrete Hidden Markov Models. The proposed method can help musicians and disc-jockeys in mixing a segment of tracks to create a medley. When tested on 120 songs, the success rate of the music key identification reached around 87.5%.
본 논문은 지휘자의 지휘 동작으로부터 일련의 영상들을 추출하여 지휘자가 지휘하는 박자를 인식하는 방법을 제안하고 있다 색상판별에 의해서 손의 위치를 감지하였으며 양자화를 통해서 그 위치를 기호화함으로써 지휘 동작을 일련의 기호로 표현하였다. 변형을 포함하는 기호열의 인식에 좋은 결과를 보이는 HMM(Hidden Markov Model)을 사용함으로써 표현된 기호열을 지휘박자로 인식하도록 하는 시스템을 구성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.