• 제목/요약/키워드: Hidden Markov Model

검색결과 642건 처리시간 0.023초

CRM을 위한 은닉 마코프 모델과 유사도 검색을 사용한 시계열 데이터 예측 (Time-Series Data Prediction using Hidden Markov Model and Similarity Search for CRM)

  • 조영희;전진호;이계성
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.19-28
    • /
    • 2009
  • 시계열의 예측에 대한 문제는 오랫동안 많은 연구자들의 연구의 대상이었으며 예측을 위한 많은 방법이 제안되었다. 본 논문에서는 은닉 마코프 모델(Hidden Markov Model)과 우도(likelihood)를 사용한 유사도 검색을 통하여 향후 시계열 데이터의 운행 방향을 예측하는 방법을 제안한다. 이전에 기록된 시계열 데이터에서 질의 시퀸스(sequence)와 유사한 부분을 검색하고 유사 부분의 서브 시퀸스를 사용하여 시계열을 예측하는 방법이다. 먼저 주어진 질의 시퀸스에 대한 은닉 마코프 모델을 작성한다. 그리고 시계열 데이터에서 순차적으로 일정 길이의 서브 시퀸스를 추출하고 추출된 서브 시퀸스와 작성된 은닉 마코프 모델과의 우도를 계산한다. 시계열 데이터로부터 추출된 서브 시퀸스 중에서 우도가 가장 높은 시퀸스를 유사 시퀸스로 결정하고 결정된 부분 이후의 값을 추출하여 질의 시퀸스 이후의 예측 값을 추정한다. 실험 결과 예측 값과 실제 값이 상당한 유사성을 나타내었다. 제안된 방법의 유효성은 코스피(KOSPI) 종합주가지수를 대상으로 실험하여 검증한다.

Hidden Markov Model과 Karhuman Loevs Transform를 이용한 얼굴인식 (A Face Recognition using the Hidden Markov Model and Karhuman Loevs Transform)

  • 김도현;황선기;강용석;김태우;김문환;배철수
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권1호
    • /
    • pp.3-8
    • /
    • 2011
  • 본 논문은 실험영상이 학습영상에 대해 조명의 차이가 있는 경우에도 데이터베이스 안에서 누구인지를 식별하는 얼굴인식 방법을 제안하였으며, 또한 HMM과 KLT를 이용한 얼굴인식 알고리즘의 수행결과를 비교, 분석하였다. 얼굴인식 방법으로 측정벡터는 직교변환(Karhuman Loevs Trans-form : KLT)의 상관관계를 이용하여 얻은 HMM의 정역학특성을 사용하여 HMM 기존의 얼굴인식 방법에서 인식률을 개선하였으며, 실험결과로써 조명의 조건에 따른 여러 가지 복잡한 주변 상황변화에서도 제안된 방식의 효율성을 입증할 수 있었다.

HMM을 이용한 회전체 시스템의 질량편심 결함진단 (Fault Diagnosis of Rotating System Mass Unbalance Using Hidden Markov Model)

  • 고정민;최찬규;강토;한순우;박진호;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제25권9호
    • /
    • pp.637-643
    • /
    • 2015
  • In recent years, pattern recognition methods have been widely used by many researchers for fault diagnoses of mechanical systems. The soundness of a mechanical system can be checked by analyzing the variation of the system vibration characteristic along with a pattern recognition method. Recently, the hidden Markov model has been widely used as a pattern recognition method in various fields. In this paper, the hidden Markov model is employed for the fault diagnosis of the mass unbalance of a rotating system. Mass unbalance is one of the critical faults in the rotating system. A procedure to identity the location and size of the mass unbalance is proposed and the accuracy of the procedure is validated through experiment.

웨이블렛 계수와 Hidden Markov Model을 이용한 얼굴인식 기법 (Face Recognition Using Wavelet Coefficients and Hidden Markov Model)

  • 이경아;이대종;박장환;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.673-678
    • /
    • 2003
  • 본 논문에서는 웨이블렛 계수와 Hidden Markov Model(HMM) 이용한 얼굴인식 알고리즘을 제안 한다. 입력 영상은 이산웨이블렛을 기반으로 한 다행상도 분석기법을 사용하여 데이터 수를 압축한 후, 각각의 해상도에서 얻어진 웨이블렛 계수를 특징벡터로 사용하여 HMM의 모델을 생성한다. 인식단계 에서는 웨이블렛 변환에 의해 생성된 개별대역의 인식값을 더하여 상호 보완함으로써 인식률을 높일 수 있었다. 제안된 알고리즘의 타당성을 검증하기 위하여 기본적 알고리즘인 벡터 양자화(VQ) 기법을 적용한 경우와 기존 얼굴인식에 제안된 DCT-HMM을 이용한 기법과의 인식률 비교를 한 결과, 제안된 방법이 우수한 성능을 보임을 알 수 있었다.

Neural-HMM을 이용한 고립단어 인식 (Isolated-Word Recognition Using Neural Network and Hidden Markov Model)

  • 김연수;김창석
    • 한국통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.1199-1205
    • /
    • 1992
  • 본 논문에서는 HMM(Hidden Markov Models)에서 문제점이 되는 개인차에의한 변동을 흡수하고, 적은 학습 데이타로서 인식률을 향상시키기 위하여 신경회로망을 이용한 NN-HMM(Neural Network Hidden Makov Models)에 의해 한국어 인식에 관하여 연구하였다. 이 방법은 HMM과 신경회로망의 출력을 각각 독립적인 인식값으로 가정하여 두 시스템의 확률곱으로 서로 보정되어 최대 인식확률의 음성모델을 인식하는 음성인식 시스템이다. 본 방법의 타당성을 평가하기 위하여 남, 여화자가 28개의 DDD 지역명을 발성한 음성데이타로 실험한 결과, 이산분포 HMM에 의한 방법에서는 91[%], 신경회로망에 의한 방법에서는 89[%], 제안된 방법에서는 95[%]의 향상된 인식률을 얻으므로써 인식성능의 우수함을 확인하였다.

  • PDF

Improved Bimodal Speech Recognition Study Based on Product Hidden Markov Model

  • Xi, Su Mei;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.164-170
    • /
    • 2013
  • Recent years have been higher demands for automatic speech recognition (ASR) systems that are able to operate robustly in an acoustically noisy environment. This paper proposes an improved product hidden markov model (HMM) used for bimodal speech recognition. A two-dimensional training model is built based on dependently trained audio-HMM and visual-HMM, reflecting the asynchronous characteristics of the audio and video streams. A weight coefficient is introduced to adjust the weight of the video and audio streams automatically according to differences in the noise environment. Experimental results show that compared with other bimodal speech recognition approaches, this approach obtains better speech recognition performance.

상태의 고유시간 정보를 포함하는 Hidden Markov Model (Hidden Markov Models Containing Durational Information of States)

  • 조정호;홍재근;김수중
    • 대한전자공학회논문지
    • /
    • 제27권4호
    • /
    • pp.636-644
    • /
    • 1990
  • Hidden Markov models(HMM's) have been known to be useful representation for speech signal and are used in a wide variety of speech systems. For speech recognition applications, it is desirable to incorporate durational information of states in model which correspond to phonetic duration of speech segments. In this paper we propose duration-dependent HMM's that include durational information of states appropriately for the left-to-right model. Reestimation formulae for the parameters of the proposed model are derived and their convergence is verified. Finally, the performance of the proposed models is verified by applying to an isolated word, speaker independent speech recognition system.

  • PDF

HMM을 이용한 심장 전도 시스템의 모델화와 추정 (Modeling and Estimation of Cardiac Conduction System using Hidden Markov Model)

  • 함지훈;박광석
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.222-227
    • /
    • 1997
  • 회귀에 기인하는 부정맥의 발생 기전 분석을 위해 심장 전도 계통의 변경된 Hidden Markov Model을 세우고 모의 실험을 하였다. 먼저, 심근의 탈분극 시간과 전도 속도, 탈분극의 자율성(autonomicity)을 매개 변수로 한 모의 실험을 통해 시간적인 심장 진도와 피에 따른 심전도 결과를 얻었다. 결과는 연속된 심전도 파형과 그 발생 시간이었다. 매개변수는 율동의 속도, 각 파형간의 간격, 이상 파형의 발생 빈도등을 결정한다. 정상 동율격 및 심실상성/심실성 정맥, 심방/심실 조기 박동등을 모의 실험할 수 있는 매개변수의 세트를 구하였다. 다음으로 Hidden Markov Model의 확률적 추정 방법을 응용하여 심전도 결과를 가지고 최적 확률의 심장 전도 경로를 추정하였다. 변경된 추정 방법을 이용하여, 모의 실험한 전도경로와 추정한 경로가 유사함을 확인하였다.

  • PDF

Music Key Identification using Chroma Features and Hidden Markov Models

  • Kanyange, Pamela;Sin, Bong-Kee
    • 한국멀티미디어학회논문지
    • /
    • 제20권9호
    • /
    • pp.1502-1508
    • /
    • 2017
  • A musical key is a fundamental concept in Western music theory. It is a collective characterization of pitches and chords that together create a musical perception of the entire piece. It is based on a group of pitches in a scale with which a music is constructed. Each key specifies the set of seven primary chromatic notes that are used out of the twelve possible notes. This paper presents a method that identifies the key of a song using Hidden Markov Models given a sequence of chroma features. Given an input song, a sequence of chroma features are computed. It is then classified into one of the 24 keys using a discrete Hidden Markov Models. The proposed method can help musicians and disc-jockeys in mixing a segment of tracks to create a medley. When tested on 120 songs, the success rate of the music key identification reached around 87.5%.

HMM을 이용한 지휘 동작의 인식 (Recognition of Conducting Motion using HMM)

  • 문형득;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.25-30
    • /
    • 2004
  • 본 논문은 지휘자의 지휘 동작으로부터 일련의 영상들을 추출하여 지휘자가 지휘하는 박자를 인식하는 방법을 제안하고 있다 색상판별에 의해서 손의 위치를 감지하였으며 양자화를 통해서 그 위치를 기호화함으로써 지휘 동작을 일련의 기호로 표현하였다. 변형을 포함하는 기호열의 인식에 좋은 결과를 보이는 HMM(Hidden Markov Model)을 사용함으로써 표현된 기호열을 지휘박자로 인식하도록 하는 시스템을 구성하였다.

  • PDF