Hidden Markov Models Containing Durational Information of States

상태의 고유시간 정보를 포함하는 Hidden Markov Model

  • Published : 1990.04.01

Abstract

Hidden Markov models(HMM's) have been known to be useful representation for speech signal and are used in a wide variety of speech systems. For speech recognition applications, it is desirable to incorporate durational information of states in model which correspond to phonetic duration of speech segments. In this paper we propose duration-dependent HMM's that include durational information of states appropriately for the left-to-right model. Reestimation formulae for the parameters of the proposed model are derived and their convergence is verified. Finally, the performance of the proposed models is verified by applying to an isolated word, speaker independent speech recognition system.

Keywords