• Title/Summary/Keyword: Hexapoda

Search Result 4, Processing Time 0.02 seconds

Assaying Mitochondrial COI Sequences and Their Molecular Studies in Hexapoda, PART I: From 2000 to 2009 (육각강에서 보고된 미토콘드리아 COI 염기서열과 이들을 이용한 분자 연구 논문 분석, 파트 I: 2000년~2009년)

  • Lee, Wonhoon;Park, Jongsun;Akimoto, Shin-Ichi;Kim, Sora;Kim, Yang-Su;Lee, Yerim;Kim, Kwang-Ho;Lee, Si Hyeock;Lee, Yong-Hwan;Lee, Seunghwan
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.395-402
    • /
    • 2013
  • Since 2000, a large number of molecular studies have been conducted in Hexapoda with generating large amount of mitochondrial sequences. In this study, to review mitochondrial COI sequences and their molecular studies reported in Hexapoda from 2000 to 2009, 488 molecular studies conducted based on 58,323 COI sequences were categorized according to 26 orders and the positions of COI sequences (5', 3', and entire regions). The numbers of molecular studies in which the three regions utilized varied largely among the 26 orders; however, seven orders showed preferred positions of COI sequences in the researches: Diptera and Orthoptera revealed the largest number of studies in the 5' region; while, Coleoptera, Phthiraptera, Odonata, Phasmatodea, and Psocoptera, showed the largest number of studies in the 3' region. From comparing 84 molecular studies published before 2000, we observed the possibilities that molecular studies in Coleoptera, Diptera, Phthiraptera, and Phasmatodea from 2000 to 2009 had been followed classical studies using the positions of COI sequences well-known until 1999. This study provides useful information to understand the overall trends in COI sequence usages as well as molecular studies conducted from 2000 to 2009 in Hexapoda.

On the Debates of Arthropod Phylogeny (절지동물 계통에 관한 논쟁)

  • 황의욱
    • Animal Systematics, Evolution and Diversity
    • /
    • v.18 no.1
    • /
    • pp.165-179
    • /
    • 2002
  • In spite of dramatic change of environmental condition since Cambrian big-bang (explosion occurred ca.540 mya, the phylum Arthropoda retains a great diversity, and it is estimated approximately that 1-10 million arthropod species are extant on the earth. Except for an extinct arthopod subphylum Trilobita, extant arthropods could be divided into five subphyla: Hexapoda, Crustacea, Myriapoda, Chelicerata, and Pycnosonida. During the last century, systematists have disputed about interrealtionships among Arthropoda and its relatives (Onychophora, Tardigrada, and Pentastomida), arthropod phylogenetic position within protostome animals, monophyly or polyphyly of the phylum Arthropods, and interrelationships among five arthropod subgroups (subphyla) etc. Recently, new animal phylogeny was reported that protostomes could be clustered into two groups, Lophotrochozoa and Ecdysozoa, and molting animals such as Nematoda and Arthropoda were included within the Ecdysozoa. On the basis of the new animal phylogeny, first of all, I would mention phylogenetic positions and relationships of Arthropods and its relatives to introduce controversies of arthropod phylogeny in phylum level of animals. After that, I focused mainly on the controveries related to arthropod monophyly and phylogenetic relationships among four major arthropod groups except Pycnogonida. In this work, Pycnogonida which is a relatively small group and one of the five arthropod subphyla was not handled significantly although there are some controversies if it is a sister taxon of chelicerates or the most primitive arthropod group (namely, a sister of four remains arthropod groups).

Feeding Habits of Chaenogobius gulosus in the Coastal Waters of Tongyeong, Korea (통영 주변해역에서 출현하는 별망둑(Chaenogobius gulosus)의 식성)

  • Baeck, Gun-Wook;Park, Chan-Il;Jeong, Jae-Mook;Kim, Mu-Chan;Huh, Sung-Hoi;Park, Joo-Myun
    • Korean Journal of Ichthyology
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • The feeding habits of Chaenogobius gulosus were studied based on an examination of the stomach contents of 333 specimens collected between October 2008 and September 2009 in the coastal waters of Tongyeong, Korea. The specimens ranged in standard length (SL) from 2.0 to 12.6 cm. C. gulosus is an omnivore and consumes mainly seaweeds (such as Ulva pertusas), crabs and gastropods. Its diet also included small quantities of bivalves, polychaetes, insects, shrimps, mysids and amphipods. Smaller individuals (<6 cm SL) consumed mainly gastropods. The proportion of these prey items decreased with increasing fish size, and this decrease paralleled the increased consumption of seaweeds. Seasonal changes in the diet of C. gulosus were significant. Seaweeds were consumed more during spring and summer compare with other seasons.

The Complete Mitochondrial Genome of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia): Non-Monophylies of Maxillopoda and Crustacea

  • Lim, Jong Tae;Hwang, Ui Wook
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.314-322
    • /
    • 2006
  • The whole mitochondrial genome (14,915 nt) of Pollicipes mitella (Crustacea, Maxillopoda, Cirripedia, Thoracica) was sequenced and characterized. It is the shortest of the 31 completely sequenced crustacean mitochondrial genomes, with the exception of a copepod Tigriopus japonicus (14,628 nt). It consists of the usual 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 relatively short non-coding region (294 nt). The thoracican cirripeds apart from Megabalanus volcano have the same arrangement of protein-coding genes as Limulus polypemus, but there are frequent tRNA gene translocations (at least 8). Some interesting translocation features that may be specific to the thoracican cirriped lineage are as follows: 1) trnK-trnQ lies between the control region and trnI, 2) trnA-trnE lies between trnN and trnS1, 3) trnP lies between ND4L and trnT, and 4) trnY-trnC lies between trnS2 and ND1. In P. mitella there are two trnL genes (L1 and L2) in the typical crustacean positions (ND1-L1-LrRNA and CO1-L2-CO2). The present result is compared and discussed with the other three cirriped mitochondrial genomes from one pedunculate (Pollicipes polymerus) and two sessiles (Tetraclita japonica and M. volcano) published so far. Mitochondrial protein phylogenies reconstructed by the BI and ML algorithms show that the thoracican Cirripedia is monophyletic (BPP 100/BP 100) and associated with Remipedia (BPP 98/BP 35). In addition, Oligostraca, including Ostracoda, Branchiura, and Pentastomida, is a monophyletic group (BPP 99/BP 68), and is basal to all the other examined arthropods. Remipedia + Cirripedia appears as an independent lineage within Arthropoda, apart from Thoracopoda (Malacostraca, Branchiopda, and Cephalocarida). The Thoracopoda is paraphyletic to Hexapoda. The present result suggests that the monophylies of Crustacea and Maxillopoda should be reconsidered.