• Title/Summary/Keyword: Hexafluoropropylene

Search Result 48, Processing Time 0.023 seconds

Rational Design of Extractive Distillation Toward Enhanced Separation of HFPO from HFP/HFPO Mixture

  • Lee, Yongtaek
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • Hexafluoropropyleneoxide ($C_3F_6O$, HFPO) is highly expensive and it may be used as a raw material for the synthesis of various fluorine based compounds. Currently, extractive distillation method has gained considerable attention to collect the HFPO from a mixture of HFPO / hexafluoropropylene ($C_3F_6$, HFP). Optimized operating conditions are studied using a theoretical method for the extraction process. Among available solvents for the purification process, the use of 1,1-dichloro-1-fluoroethane exhibits a high purity of HFPO as a top product and minimize the required heat duty. Since the boiling point of the solvent increases as the pressure in the column increases, the enhanced extractive capability of the solvent led to the high purity of HFPO at the high pressure.

Flame Extinguishing Concentrations of Mixed Gaseous Agents (가스계 혼합소화약제의 불꽃소화농도)

  • 김재덕;임종성;이윤우;이윤용
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.34-40
    • /
    • 2001
  • Fire extinguishing efficiency of mixed gaseous agents were investigated by the cup-burner test and predicting by the model of flame extinguishing concentration. The binary mixed agents that tested were carbon dioxide/HFC-23, carbon dioxide/HCFC-22, carbon dioxide/HFC-227ea, carbon dioxide/HFC-125, carbon dioxide/FIC-13I1, Hexafluoropropylene/HFC-23 and ternary mixed agents were carbon dioxide/HFC-23/HFC-l34a, carbon dioxide/HFC-23/HFC-227ea, carbon dioxide/HFC-23/HFC-125. A model which contains the flame extinguishing concentration and composition of pure components predicted the flame extinguishing concentration of mixture well. This model was superior when each component of the mixture exhibit physical fire extinguishing performance.

  • PDF

Influence of the Cation Parts of Imidazolium Hexafluorophosphate on Synthesis of Pd/C Particles as a HFP Hydrogenation Catalyst (Imidazolium Hexafluorophosphate의 양이온이 HFP 수소화 반응용 Pd/C 촉매 제조에 미치는 영향)

  • Kim, Chang-Soo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.249-253
    • /
    • 2014
  • Palladium on carbon catalysts for hexafluoropropylene hydrogenation were prepared using imidazolium hexafluorophosphate with various cation parts. The morphology of palladium was relatively affected by the cation parts of the ionic liquid. With increasing alkyl chains of the ionic liquid cation, the shape of palladium particle changed from spherical to cylindrical due to the effect of steric stabilization. After calcination at $500^{\circ}C$, all catalysts possessed the comparable crystal structure. Under the identical reaction conditions, the catalyst prepared using the ionic liquid with hexyl chain in cation parts showed the most effective reactivity.

Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries (고성능 리튬 이온전지를 위한 폴리머-세라믹 복합 겔 고분자 전해질)

  • Jang, So-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.4
    • /
    • pp.123-128
    • /
    • 2016
  • In this study, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based gel polymer electrolyte incorporating nano-size $Al_2O_3$ ceramic particle was prepared by electrospinning. The gel polymer electrolyte (GPE) incorporated with $Al_2O_3$ ceramic particle showed higher ionic conductivity of $9.5{\times}10^{-2}Scm^{-1}$ than pure PVdF-HFP GPE without ceramic particle and improved the electrochemical stability up to 5.2 V. The GPEs were assembled with $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (NMC) cathode for electrochemical test. The GPE batteries at 0.1 C-rate delivered $168.2mAh\;g^{-1}$ for pure GPE and $189.6mAh\;g^{-1}$ for hybrid GPE, respectively. Therefore, the incorporation of high dielectric constant ceramic particle will be good strategy to enhance the stability and electrochemical properties of lithium ion gel polymer batteries.

Preparation of Poly(vinylbenzyl chloride)-grafted Fluoropolymer Films by Using Radiation Grafting Method (방사선 그래프팅에 의한 염화비닐벤질 고분자가 그래프트된 불소필름의 제조)

  • Fei, Geng;Sohn, Joon-Yong;Lee, Youn-Sik;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.464-468
    • /
    • 2010
  • In this study, a vinylbenzyl chloride (VBC) monomer was successfully grafted onto the several fluoropolymer films including poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA), and poly(ethylene-co-tetrafluoroethylene) (ETFE) films by using a simultaneous irradiation method. The results indicated that PVBC graft polymer can be easily grafted onto the ETFE film than other fluorinated films under the same irradiation condition. The grafted films were characterized by using FTIR, TGA, and SEM-EDS instruments. The elongation at the breaking of the grafted films was found to decrease with an increase of degree of grafting (DOG). The PVBC-grafted ETFE films were found to have better mechanical properties than other PVBC-grafted fluorinated films.

Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes

  • Garcia-Payo, M.C.;Essalhi, M.;Khayet, M.;Garcia-Fernandez, L.;Charfi, K.;Arafat, H.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.215-230
    • /
    • 2010
  • Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different polyethylene glycol (PEG) concentrations as non-solvent additive in the dope solution. Two different PEG concentrations (3 and 5 wt.%). The morphology and structural characteristics of the hollow fiber membranes were studied by means of optical microscopy, scanning electron microscopy, atomic force microscopy (AFM) and void volume fraction. The experimental permeate flux and the salt (NaCl) rejection factor were determined using direct contact membrane distillation (DCMD) process. An increase of the PEG content in the spinning solution resulted in a faster coagulation of the PVDF-HFP copolymer and a transition of the cross-section internal layer structure from a sponge-type structure to a finger-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that both the pore size and roughness of the internal surface of the hollow fibers enhanced with increasing the PEG concentration, whereas no change was observed at the outer surface. The void volume fraction increased with the increase of the PEG content in the spinning solution resulting in a higher DCMD flux and a smaller salt rejection factor.

Thermal and Electrical Properties of Poly(vinylidene fluoride-hexafluoropropylener)-Based Proton Conducting Gel-Electrolytes (Poly(vinylidene fluoride-hexafluoropropylene)계 양성자 전도성 겔-전해질의 열적, 전기적 특성)

  • 최병구;박상희
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.179-184
    • /
    • 2002
  • Polymer electrolyte films consisting of poly (vinylidenefluoride-hexafluoro-propylene) (PVdF-HFP) $H_3PO_4$and a mixture of ethylene carbonate(EC), $\gamma$-butyrolactone(BL) and dimethylcarbonate (DMC) were examined in order to obtain the best compromise between high protonic conductivity, homogeniety and dimensional stability. Measurements of differential scanning calorimetry and ionic conductivity have been carried out for various compositions. The highest proton conductivity of 7.3 $\times$$10^{-3}Sm^{-1}$ at $30^{\circ}C$ were obtained for a film of 30(PVdF-HFP) + 50EC/DMC + 20H$_3$PO$_4$. From the thermal study, it has been found that the PVdF-HFP gels are stable up to $80^{\circ}C$, and the $H_3PO_4$ enhances the miscibility of the polymer and the solvent by interacting sensitively with polymer segments.

Preparation of Palladium on Carbon for Hydrogenation Catalyst Using [Bmim][$CF_3SO_3$] as an Effective Solvent (기능성 용매인 [Bmim][$CF_3SO_3$]를 이용한 수소화반응용 탄소 담지 팔라듐 촉매 제조)

  • Tae, Hyunman;Jeon, Seung Hye;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.82-86
    • /
    • 2013
  • Palladium particles were synthesized with 1-buthyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][$CF_3SO_3$]) as an effective solvent during the synthesis. The morphology of the particles was affected by the concentration of [Bmim][$CF_3SO_3$]. Furthermore, the palladium on carbon powder was prepared with various [Bmim][$CF_3SO_3$] concentrations and calcinations temperatures as a catalyst for hexafluoropropylene hydrogenation. Catalytic activity was varied by both conditions significantly. Under the identical condition, the catalyst prepared by the same mole ratio of [Bmim][$CF_3SO_3$] and palladium, and calcined at $500^{\circ}C$ was the most active in this reaction.

Study of surface modification and contact angle by electrospun PVdF-HFP membrane with DLC coating (DLC 코팅에 의한 PVdF-HFP 막의 표면변화 및 접촉각 연구)

  • Lee, Tae Dong;Cho, Hyun;Yoon, Su Jong;Kim, Tae Gyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Poly vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) membrane were prepared by the electrospinning technique. We had applied a DLC coating process and then the surface of the membrane and the contact angle change was investigated. Electrospun fibrous PVdF-HFP membrane surface became to wrinkled shape by Ar plasma treatment and treatment conditions. The wrinkled surface of PVdF-HFP membrane became super-hydrophilic. However, after DLC coating process, it became super-hydrophobic. The resulting surfaces were characterized by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM). Resultantly it was recognized that the wettability characteristics of the membrane surfaces depended on the chemical composition and surface morphology.