• Title/Summary/Keyword: Heterotrophic bacteria

Search Result 221, Processing Time 0.027 seconds

Bacterial Community and Biological Nitrate Removal: Comparisons of Autotrophic and Heterotrophic Reactors for Denitrification with Raw Sewage

  • Lee, Han-Woong;Park, Yong-Keun;Choi, Eui-So;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1826-1835
    • /
    • 2008
  • An autotrophic denitrification reactor (ADR-l) and a heterotrophic denitrification reactor (HDR-2) were operated to remove nitrate and nitrite in an anoxic environment in raw sewage. The $NO_3$-N removal rate of ADR-l was shown to range from 52.8% to 78.7%, which was higher than the $NO_3$-N removal rate of HDR-2. Specific denitrification rates (SDNR) of ADR-l and HDR-2 were 3.0 to 4.0 and 1.1 to $1.2\;mgNO_3$-N/gVSS/h, respectively. From results of restriction fragment length polymorphism (RFLP) of the 16S rRNA gene, Aquaspirillum metamorphum, Alcaligenes defragrans, and Azoarcus sp. were $\beta$-Proteobacteria that are affiliated with denitritying bacteria in the ADR-l. Specifically, Thiobacillus denitrificans was detected as an autotrophic denitrification bacteria. In HDR-2, the $\beta$-Proteobacteria such as Denitritying-Fe-oxidizing bacteria, Alcaligenes defragrans, Acidovorax sp., Azoarcus denitrificans, and Aquaspirillum metamorphum were the main bacteria related to denitrifying bacteria. The $\beta$-and $\alpha$-Proteobacteria were the important bacterial groups in ADR-l, whereas the $\beta$-Proteobacteria were the main bacterial group in HDR-2 based on results of fluorescent in situ hybridization (FISH). The number of Thiobacillus denitrificans increased in ADR-l during the operation period but not in HRD-2. Overall, the data presented here demonstrate that many heterotrophic denitritying bacteria coexisted with autotrophic denitrifying bacteria such as Thiobacillus denitrificans for nitrate removal in ADR-l. On the other hand, only heterotrophic denitritying bacteria were identified as dominant bacterial groups in HDR-2. Our research may provide a foundation for the complete nitrate removal in raw sewage of low-COD concentration under anoxic condition without any external organic carbon or the requirement of post-treatment.

Analysis of Effects of Factors Influencing Biofilm Formation in Drinking Water Distribution Pipe Using Factorial Experimental Design (요인실험계획을 이용한 수도관 생물막 형성 영향 인자의 효과 분석)

  • Park, Se-Keun;Choi, Sung-Chan;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.181-192
    • /
    • 2005
  • This study evaluated the effect of factors influencing the initial biofilm formation in drinking water distribution pipe by running experiments using a $2^{4-1}$ fractional factorial experimental design with a replicate. Important variables used for assessing biofilm formation included BDOC(biodegradable dissolved organic carbon), viable heterotrophic bacteria present in drinking water, water temperature, and shear stress at two levels each. Based on the statistical analysis of biofilm levels measured as attached HPC(heterotrophic plate count) and community-level assay, the main factors that have significant effects on biofilm formation were found to be viable heterotrophic bacteria and BDOC. Water temperature only exhibited significant effect on the levels of attached HPC, while shear stress was not a significant factor under given conditions. Moreover, the statistical analysis revealed that interactions between the important variables were not statistically significant at a 0.05 significance level.

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities

  • Kim, Young-Ok;Yang, Eun-Jin;Kang, Jung-Hoon;Shin, Kyoung-Soon;Chang, Man;Myung, Cheol-Soo
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.

The Role of Heterotrophic Protists in the Planktonic Community of Kyeonggi Bay, Korea

  • Lee, Won-Je;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • In order to understand the role of heterotrophic protists in the coastal waters off Inchon, abiotic and biotic factors were measured from January 1992 to February 1993. Microbial carbon biomass (mean212.9$^{\pm}$119.1 $^{\mu}$gC/1) was composed of 4.2% bacteria, 0.3% cyanobacteria, 12.l% autotrophic nanoflagellates, 6.6% heterotrophic nanoflagellates, 5.8 heterotrophic ciliates and 71.0% diatom and Mesodinium spp. The carbon biomass of heterotrophic protists (heterotrophic nanoflagellates and ciliates) was highest in October 1992 (mean 37.8$^{\pm}$22.5 $^{\mu}$gC/1), and was low in August 1992 (mean 21.2$^{\pm}$10.8 $^{\mu}$gC/1) and in February 1993 (mean 19.5$^{\pm}$6.4 $^{\mu}$gC/1). However, the contribution of heterotrophic protists to total microbial carbon biomass was higher in January 1992 and February 1993 (about 21%) when the phytoplankton was dominated by nanoplankton than in August and October (about 9%) when large diatoms occurred in large numbers. This study suggests that in Kyeonggi Bay heterotrophic protists might play a more important role as prey for zooplankton and as consumers of bacteria & small phytoplankton in less productive seasons (especially winter) than in productive seasons (autumn), and that the classic trophic pathway from diatoms through copepods to fish might be dominant nearly every season.

  • PDF

Reduction of bacterial regrowth in treated water by minimizing water stagnation in the filtrate line of a gravity-driven membrane system

  • Yi, JongChan;Lee, Jonghun;Jung, Hyejin;Park, Pyung-Kyu;Noh, Soo Hong
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • This study monitored changes in the level of heterotrophic bacteria in the filtrate and investigated the effect of stagnant water on it, using a batch-operated, gravity-driven membrane system for household water treatment. The filtration test was carried out in the presence and absence of stagnant water in the filtrate line. The results showed that stagnant water accelerated the heterotrophic bacteria levels, measured by heterotrophic plate count, even though the heterotrophic plate count of the filtrate finally increased up to $10^5CFU/mL$ regardless of the presence of stagnant water. When the change in heterotrophic plate count of a batch was monitored over filtration time, heterotrophic plate count of the filtrate rapidly decreased within 5 min for each batch filtration. Biofilm formation on the filtrate line was observed in the presence of stagnant water. The biofilm fully covered the filtrate line and contained numerous microorganisms. During storage after filtration, heterotrophic plate count increased exponentially. To improve the filtrate quality of a filtration-based household water treatment system, therefore, the stagnant water in the filtrate line should be minimized, the filtrate produced at the first 5 min is recommended not to be used as potable water, and the storage of filtrate should be avoided.

Annual Distribution of Heterotrophic Bacterial Community in the Marine Ranching Ground of Tongyeong Coastal Waters (통영 바다목장 해역의 종속영양세균 군집의 연차적 분포)

  • Kim, Mal-Nam;Lee, Han-Woong;Lee, Jin-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • The cell numbers of heterotrophic bacteria inhabiting the surface and bottom sea water harvested from the 5 stations in the marine ranching ground of Tongyeong coastal waters in $2003{\sim}2007$ were examined, and species composition of the heterotrophic bacterial population and dominant species were analyzed as well. Sea water samples collected in summer season contained much higher number of heterotrophic bacteria than those harvested in winter, spring and autumn seasons due to the higher sea water temperature. However the cell number of heterotrophic bacteria did not show a significant dependence on the location of the sampling stations. The cell number of heterotrophic bacteria in the surface sea water harvested in October 2003 and in September 2004 was not discernibly different from that in the bottom sea water and sometimes the former was even fewer than the latter because of the typhoon and localized torrential downpour. The number of heterotrophic bacteria decreased every year. The main bacterial species were Pseudomonas fluorescens TY1, Pseudomonas stutzeri TY2, Acinetobacter lwoffii TY3, Sphingomonas paucimobilis TY4, Burkholderia mallei TY5, Pasteurella haemolytica TY6, Pasteurella multocida TY7, Comamonas acidovorans TY8, Actinobacillus ureae TY9 and Chryseobacterium indologenes TY10. P. fluorescens TY1 and A. lwoffii TY3 were found to be the dominant species.

Bacterial Regrowth in Water Distribution Systems and Its Relationship to the Water Quality: Case Study of Two Distribution Systems in Korea

  • Yoon, Tae-Ho;Lee, Yoon-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.262-267
    • /
    • 2004
  • This study was done to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution systems, which belongs to both K and Y water treatment plant of S city in Korea. The data analyzed in the distribution systems show that the free chlorine residuals decreased from 0.10 to 0.56 mg/l for K, and 0.51 to 0.78 mg/l for Y. The decay of free chlorine is clearly higher in both March and August than in January. The HPC in the distribution systems are ranged from 0 to 40 cfu/ml for K, 0 to 270 cfu/ml for Y, on $R_2$A medium. In particular, its level is relatively high at the consumer's ground storage tanks, taps, and the point-of-end area of Y. The predominant genera that were studied in the distribution systems were Acinetobacter, Sphingomonas (branch of Pseudomonas), Micrococcus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria increases in the end-point area. Most of them are either encapsulated cells or of Gram-positve cocci. In conclusion, the point-of-end area in distribution systems shows the longer flow distance from the water treatment plants, along with a greater diversity and a higher level of heterotrophic bacteria, due to the significant decay of free chlorine residuals.

Kinetics of nitrification and acrylamide biodegradation by Enterobacter aerogenes and mixed culture bacteria in sequencing batch reactor wastewater treatment systems

  • Madmanang, Romsan;Jangkorn, Siriprapha;Charoenpanich, Jittima;Sriwiriyarat, Tongchai
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.309-317
    • /
    • 2019
  • This study evaluated the kinetics of acrylamide (AM) biodegradation by mixed culture bacteria and Enterobacter aerogenes (E. aerogenes) in sequencing batch reactor (SBR) systems with AQUASIM and linear regression. The zero-order, first-order, and Monod kinetic models were used to evaluate the kinetic parameters of both autotrophic and heterotrophic nitrifications and both AM and chemical oxygen demand (COD) removals at different AM concentrations of 100, 200, 300, and 400 mg AM/L. The results revealed that both autotrophic and heterotrophic nitrifications and both AM and COD removals followed the Monod kinetics. High AM loadings resulted in the transformation of Monod kinetics to the first-order reaction for AM and COD removals as the results of the compositions of mixed substrates and the inhibition of the free ammonia nitrogen (FAN). The kinetic parameters indicated that E. aerogenes degraded AM and COD at higher rates than mixed culture bacteria. The FAN from the AM biodegradation increased both heterotrophic and autotrophic nitrification rates at the AM concentrations of 100-300 mg AM/L. At higher AM concentrations, the FAN accumulated in the SBR system inhibited the autotrophic nitrification of mixed culture bacteria. The accumulation of intracellular polyphosphate caused the heterotrophic nitrification of E. aerogenes to follow the first-order approximation.

Heterotrophic Bacteria in Terms of Free Chlorine Residuals in water Distribution Systems (수돗물 배급수 계통의 유리잔류염소농도에 따른 종속영양세균의 거동에 관한 연구)

  • Yoon, Tae-Ho;Lee, Yoon-Jin;Rhee, Ok-Jae;Lee, Euk-Wang;Kim, Hyun;Lee, Dong-Chan;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.9-18
    • /
    • 2002
  • This study was to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution systems belong to both K and Y water treatment plant. The data analyzed in this study showed that in distribution systems(DS), the free chlorine residuals were decreased from 0.10 to 0.56 ㎎/1 for K, and 0.51 and 0.78 ㎎/l for Y The decay of free chlorine were clearly higher in both March and August than those in January. The HPC in DS were ranged from 0 to 40 CFU/ml for K,0 to 270 CFU/ml for Y, on R2A medium. In particular, Its level was relatively high at consumers' ground storage tanks, taps and point-of-end area of Y, The predominant genera found in the distribution systems were Acinetobacter, Sphingomonas (branch of Pseudomonas), Microroccus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria was increased in the end-point area. Most of them were either encapsulated cells or cocci of gram-positve. In conclusion, the point-of-end area in distribution systems showed that the longer flow distance from WTP the greater diversity and higher level of heterotrophic bacteria due to the significant decay of free chlorine residuals.

The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish(Asterias amurensis) by Analysis of 16S rDNA Sequence (16S rDNA염기서열에 의한 불가사리(Asterias amurensis) 장내에서 분리된 종속영양세균 군집의 다양성)

  • Choi, Gang-Guk;Lee, Oh-Hyung;Lee, Geon-Hyoung
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.307-312
    • /
    • 2003
  • To study the diversity of heterotrophic bacteria isolated from intestine of starfish, Asterias amurensis, we collected starfishes from the coastal area near Jangheung-Gun, Jeollanam-Do, Korea during July, 2000. Population density and bacterial diversity in the intestine of starfish were measured. The results were as follows; The population densities of heterotrophic bacteria in the intestine of starfish were 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$. Gram positive bacteria occupied 59% among 29 isolates. The community structure of dominant heterotrophic bacteria in the intestine of starfish consisted of Bacillaceae in the low G+C gram positive bacteria subphylum, Microbacteriaceae in the high G+C gram positive bacteria subphylum, and Alteromonadaceae in ${\gamma}$-Proteobacteria subphylum. Among eight strains of Bacillus spp., three strains showed more than 97% identity, but five strains showed about 90% identity with type strain on the basis of partial 16S rDNA sequence.