Browse > Article
http://dx.doi.org/10.4014/jmb.0800.276

Bacterial Community and Biological Nitrate Removal: Comparisons of Autotrophic and Heterotrophic Reactors for Denitrification with Raw Sewage  

Lee, Han-Woong (Hazardous Substance Research Center-S&SW Louisiana State University)
Park, Yong-Keun (School of Life Sciences and Biotechnology, Korea University)
Choi, Eui-So (Department of Civil and Environmental Engineering, Korea University)
Lee, Jin-Woo (Department of Civil and Environmental Engineering, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.11, 2008 , pp. 1826-1835 More about this Journal
Abstract
An autotrophic denitrification reactor (ADR-l) and a heterotrophic denitrification reactor (HDR-2) were operated to remove nitrate and nitrite in an anoxic environment in raw sewage. The $NO_3$-N removal rate of ADR-l was shown to range from 52.8% to 78.7%, which was higher than the $NO_3$-N removal rate of HDR-2. Specific denitrification rates (SDNR) of ADR-l and HDR-2 were 3.0 to 4.0 and 1.1 to $1.2\;mgNO_3$-N/gVSS/h, respectively. From results of restriction fragment length polymorphism (RFLP) of the 16S rRNA gene, Aquaspirillum metamorphum, Alcaligenes defragrans, and Azoarcus sp. were $\beta$-Proteobacteria that are affiliated with denitritying bacteria in the ADR-l. Specifically, Thiobacillus denitrificans was detected as an autotrophic denitrification bacteria. In HDR-2, the $\beta$-Proteobacteria such as Denitritying-Fe-oxidizing bacteria, Alcaligenes defragrans, Acidovorax sp., Azoarcus denitrificans, and Aquaspirillum metamorphum were the main bacteria related to denitrifying bacteria. The $\beta$-and $\alpha$-Proteobacteria were the important bacterial groups in ADR-l, whereas the $\beta$-Proteobacteria were the main bacterial group in HDR-2 based on results of fluorescent in situ hybridization (FISH). The number of Thiobacillus denitrificans increased in ADR-l during the operation period but not in HRD-2. Overall, the data presented here demonstrate that many heterotrophic denitritying bacteria coexisted with autotrophic denitrifying bacteria such as Thiobacillus denitrificans for nitrate removal in ADR-l. On the other hand, only heterotrophic denitritying bacteria were identified as dominant bacterial groups in HDR-2. Our research may provide a foundation for the complete nitrate removal in raw sewage of low-COD concentration under anoxic condition without any external organic carbon or the requirement of post-treatment.
Keywords
Bacterial communities; autotrophic denitrification; heterotrophic denitrification;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Brettar, I., M. Labrenz, S. Flavier, J. Botel, H. Kuosa, R. Christen, and M. G. Hofle. 2006. Identification of a Thiomicrospira denitrificans-like epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic Sea. Appl. Environ. Microbiol. 72: 1364-1372   DOI   ScienceOn
2 Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662-1669
3 Koenig, A. and L. H. Liu. 1996. Autotrophic denitrification of landfill leachate using elemental sulphur. Water Sci. Technol. 34: 469-476
4 O'Hara, G. W. and R. M. Daniel. 1985. Rhizobail denitrification: A review. Soil Biol. Biochem. 17: 1-9   DOI   ScienceOn
5 Schleifer, K. H., R. Amann, W. Ludwig, C. Rothemund, N. Springer, and S. Dorn. 1992. Nucleic acid probes for the identification and in situ detection of pseudomonas, pp. 127- 134. In E. Galli, S. silver, and B. Witholt (eds.). Pseudomonas: Molecular Biology and Botechnology. American Society for Microbiology, Washinton, DC
6 Snaidr, J., R. Amann, I. Huber, W. Ludwig, and K. H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in acti ated sludge. Appl. Environ. Microbiol. 63: 2884-2896
7 Sublette, K. L. and N. D. Sylvester. 1987. Oxidation of hydrogen sulfide by Thiobacillus denitrificas: Desulfurization of natural gas. Biotechno. Bioeng. 29: 249-257   DOI   ScienceOn
8 Tal, Y., J. E. Watts, S. B. Schreier, K. R. Sowers, and H. J. Schreier. 2003. Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in closed recirculated mariculture systems. Aquaculture 215: 187-202   DOI
9 Till, B. A., L. J. Weathers, and P. J. J. Alvarez. 1998. Fe (0)-supported autotrophic denitrification. Environ. Sci. Technol. 32: 634-639   DOI   ScienceOn
10 Zhou, J., M. R. Fries, J. C. Chee-Sanford, and J. M. Tiedje. 1995. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov. Int. J. Syst. Bacteriol. 45: 500-506   DOI   ScienceOn
11 Philippot, L. 2002. Denitrifying genes in bacterial and archaeal genomes. Biochim. Biophys. Acta 1577: 355-376   DOI   ScienceOn
12 Baek, S. H., K. H. Kim, C. R. Yin, C.O. Jeon, W. T. Im, K. K. Kim, and S. T. Lee. 2003. Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under lowoxygen conditions. Curr. Microbiol. 47: 462-466
13 Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules, pp. 21-132. In H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York, NY
14 Lee, S. Y., J. B. Bollinger, D. Bezdicek, and A. Ogram. 1996. Estimation of the abundance of an unculturable soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787-3793
15 Gamble, T. N., M. R. Betlach, and J. M. Tiedje. 1977. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 33: 926-939
16 Lampe, D. G. and T. C. Zhang. 1996. Evaluation of sulfur-based autotrophic denitrification. Proceedings of the 1996 HSRC/WERC Joint Conference on the Environment, Albuquerque, New Mexico
17 Schulze, R., S. Spring, R. Amann, I. Huber, W. Ludwig, K. H. Schleifer, and P. Kampfer. 1999. Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst. Appl. Microbiol. 22: 205-214   DOI   ScienceOn
18 Porter, K. G. and Y. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948   DOI   ScienceOn
19 Jung, Y.-J., C. S. Park, H. G. Lee, and J. Cha. 2006. Isolation of a novel gellan-depolymerizing Bacillus sp. strain YJ-1. J. Microbiol. Biotechnol. 16: 1868-1873   과학기술학회마을
20 Robertson, L. A. and J. G. Kuene. 1984. Aerobic denitrification: A controversy revived. Arch. Microbiol. 139: 351-354   DOI
21 Timmer-Ten Hoor, A. 1981. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans. Antonie van Leeuwenhoek 47: 231-243   DOI   ScienceOn
22 Hallin, S. and M. Pell. 1998. Metabolic properties of denitrifying bacteria adapting to methanol and ethanol in activated sludge. Water Res. 32: 13-18   DOI   ScienceOn
23 Ju, D.-H., M.-K. Choi, J.-H. Ahn, M.-H. Kim, J.-C. Cho, T. Kim, T. Kim, and J.-O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a fullscale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261   과학기술학회마을
24 Kelly, D. P. and A. P. Wood. 2000. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the betasubclass of the with strain NCIMB 9548 as the type strain. Int. J. Syst. Evo Proteobacteria Microbiol. 50: 7-550
25 Kim, E. W. and J. H. Bae. 1999. Alkalinity requirement and the possibility of simultaneous heterotrophic denitrification during sulfurutilizing autotrophic denitrification, Proceedings of 7th IAWQ Asia-Pacific Regional Conference. on Asian Waterqual '99, Vol. 1, 583-588, Taipei, Taiwan
26 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
27 Jetten, M. S. M., M. Strous, K. T. van de Pas-Schoonen, J. Schalk, L. G. J. M. Van Dongen, A. A. Van de Graaf, S. Logemann, G. Muyzer, M. C. M. Van Loosdrecht, and J. G. Kuenen. 1999. The anaerobic oxidation of ammonium. FEMS Microbiol. Rev. 22: 421-437   DOI   ScienceOn
28 Henze, M. 1991. Capabilities of biological nitrogen removal processes from wastewater. Water Sci. Technol. 23: 669-679   DOI
29 Wirsen, C. O., S. M. Sievert, C. M. Cavanaugh, S. J. Molyneaux, A. Ahmad, L. T. Taylor, E. F. DeLong, and C. D. Taylor. 2002. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl. Environ. Microbiol. 68: 316-325   DOI   ScienceOn
30 Davies, K. J. P., D. Lloyd, and L. Boddy. 1989. The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J. Gen. Microbiol. 135: 2445-2451
31 Manz, W., R. Amann, M. Vancanneyt, and K. H. Scheifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga- Flavobacter-Bacteroides in natural environment. Microbiology 142: 1097-1106   DOI   ScienceOn
32 Foss, S., U. Heyen, and J. Harder. 1998. Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, alpha-pinene, 2-carene, and alpha-phellandrene) and nitrate. Syst. Appl. Microbiol. 21: 237-244   DOI
33 Amann, R., L. Krumholz, and D. A. Stahl. 1990. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770   DOI
34 Oh, S. E., K. S. Kim, H. C. Choi, J. Cho, and I. S. Kim. 1999. Kinetics and physiology of autotrophic denitrification by denitrifying sulfur bacteria, Proceedings of 7th IAWQ Asia-Pacific Regional conference. on Asian Waterqual '99, Vol. 1, 173-178, Taipei, Taiwan
35 Pillay, D., B. Pillay, A. O. Olaniran, W. H. L. Stafford, and D. A. Cowan. 2007. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 17: 560-570   과학기술학회마을
36 Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. PhD thesis. University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
37 Hasselblad, S. and S. Hallin. 1998. Intermittent addition of external carbon to enhance denitrification in activated sludge. Water Sci. Technol. 37: 227-233
38 Lee, H. W., S. Y. Lee, J. O. Lee, H. G. Kim, J. B. Park, E. S. Choi, D. H. Park, and Y. K. Park. 2003. The microbial community analysis of 5-stage BNR process with step feed system. Water Sci. Technol. 48: 135-141
39 Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chrisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925
40 Carter, J. P., Y. H. Hsiaao, S. Spiro, and D. J. Richardson. 1995. Soil and sediment bacteria capable of aerobic nitrate respiration. Appl. Environ. Microbiol. 61: 2852-2858
41 Tiedje, J. M. 1988. Ecology of denitrification and dissimilative nitrate reduction to ammonia, pp. 179-243. In: Bioloy of Anaerobic Microorganisms, Wiley, New York
42 Ye, R. W., D. Haas, J. O. Ka, V. Krishnapillai, A. Zimmermann, C. Baird, and J. M. Tiedje. 1995. Anaerobic activation of the entire denitrification pathway in Pseudomonas aeruginosa requires Anr, an analog of Fnr. J. Bacteriol. 177: 3606-3609   DOI
43 Tal, Y., J. E. Watts, and H. J. Schreier. 2006. Anaerobic ammoniumoxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system. Appl. Environ. Microbiol. 72: 2896-2904   DOI   ScienceOn
44 American Public Health Association. 1999. Standard Methods for Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC
45 Brosius, J., J. K. Palmer, H. P. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Nat. Acad. Sci. USA 75: 4801-4805
46 Ginige, M. P., P. Hugenholtz, H. Daims, M. Wagner, J. Keller, and L. L. Blackall. 2004. Use of stable-isotope probing, fullcycle rRNA analysis, and fluorescence in situ hybridizationmicroautoradiography to study a methanol-fed denitrifying microbial community. Appl. Environ. Microbiol. 70: 588-596   DOI   ScienceOn
47 Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616
48 Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
49 Kruithof, J. C., C. A. van Bennekom, H. A. L. Dierx, W. A. M. Hijnen, van J. A. M. Paassen, and J. C. Schippers. 1988. Nitrate removal from groundwater by sulphur/limestone filtration. Water Supply 6: 207-217
50 Manz, W., R. Amann, W. Ludwig, M. Wagner, and K. H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15: 593-600   DOI
51 van Loosdrecht, M. C. M. and M. S. M. Jetten. 1998. Microbiological conversions in nitrogen removal. Water Sci. Technol. 38: 1-7
52 Strous, M., J. A. Fuerst, E. H. Kramer, S. Logemann, G. Muyzer, K. T. van de Pas-Schoonen, R. Webb, J. G. Kuenen, and M. S. Jetten. 1999. Missing lithotroph identified as new planctomycete. Nature 400: 446-449   DOI   ScienceOn
53 Haaijer, S. C. M., M. E. W. Van der Welle, M. C. Schmid, L. P. M. Lamers, M. S. M. Jetten, and H. J. M. Op den Camp. 2006. Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals. FEMS Microbiol. Ecol. 58: 439-448   DOI   ScienceOn
54 Juretschko, S., A. Loy, A. Lehner, and W. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25: 84-99   DOI   ScienceOn
55 Lee, H. W., S. Y. Lee, J. W. Lee, J. B. Park, E. S. Choi, and Y. K. Park. 2002. Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiol. Ecol. 41: 85-94   DOI   ScienceOn
56 Ginige, M. P., J. Keller, and L. L. Blackall. 2005. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl. Environ. Microbiol. 71: 8683-8691   DOI   ScienceOn
57 Roller, C., M. Wagner, R. Amann, W. Ludwig, and K.-H. Schleifer. 1994. In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140: 2849-2858   DOI   ScienceOn
58 Holt, J. G., N. R. Krieg, P. H. A Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology. 9th Ed. Williams & Wilkins, Baltimore, U.S.A