Browse > Article

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities  

Kim, Young-Ok (Coastal Ecological Processes Research Division, South Sea Institute, KORDI)
Yang, Eun-Jin (Marine Bio-Technology and New Material Research Division, KORDI)
Kang, Jung-Hoon (Coastal Ecological Processes Research Division, South Sea Institute, KORDI)
Shin, Kyoung-Soon (Coastal Ecological Processes Research Division, South Sea Institute, KORDI)
Chang, Man (Coastal Ecological Processes Research Division, South Sea Institute, KORDI)
Myung, Cheol-Soo (Environmental Engineering & Consultant (E&C) Technology Institute)
Publication Information
Ocean Science Journal / v.42, no.1, 2007 , pp. 9-17 More about this Journal
Abstract
The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.
Keywords
bloom; breakwater; ciliates; heterotrophic bacteria; nanoflagellates; microphytoplankton;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Barnes, R.S.K. 1974. Estuarine Biology. The institute of biology's studies in biology no. 49. Edward Arnold, Southampton, UK. 76p
2 Barria de Cao, M.S. 1992. Abundance and species composition of Tintinnina (Ciliophora) in Bahia Blanca Estuary, Argentina. Estuar. Coast. Shelf Sci., 34, 295-303   DOI
3 Caron, D.A. 1983. A technique for enumeration of heterotrophic and phototrophic nanoplankton, use epifluorescence microscopy, and a comparison with other procedures. Appl. Environ. Microbiol., 4, 491-498
4 Gast, V. 1985. Bacteria as a food source for microzooplankton in the Schlei Fjord and Baltic Sea with special reference to ciliates. Mar. Ecol. Prog. Ser., 22, 107-120   DOI
5 Han, M.W. and Y.C. Park. 1999. The development of anoxia in the artificial Lake Shiwha, Korea, as a consequence of intertidal reclamation. Mar. Pollut. Bull., 38, 1194-1199   DOI   ScienceOn
6 Hargraves, P.E. 1981. Seasonal variation of tintinnids (Ciliophora, Oligotrichida) in Narragansett Bay, Rhode Island, U.S.A. J. Plankton Res., 3, 81-91   DOI
7 KOWACO. 1993. Investigation on environmental management for development of Shiwha district and build-up of Shiwha industrial complex, Korea Water Resources Corporation, Technical Report, Daejeon, Korea
8 Laybourn-Parry, J. 1992. Protozoan plankton ecology. New York: Chapman and Hall. 231 p
9 Laybourn-Parry, J., J. Olver, A. Rogerson, and P.L. Duverge. 1990. The temporal pattern of protozooplankton abundances in a eutrophic temperate lake. Hydrobiologia, 203, 99-110   DOI
10 Mouny, P., J.C. Dauvin, C. Bessineton, and B. Elkaim. 1998. Biological components from the Seine estuary: First results. Hydrobiologia, 373/374, 333-347   DOI
11 Rogers, G.F., J.C. Roff, and D.H. Lynn. 1981. Tintinnids of Chesterfield Inlet, Northwest Territories. Can. J. Zool., 59, 2360-2364   DOI
12 Schnetzer, A., R.A. Schaffner, B.A. Stauffer, P.E. Miller, A. Jones, I. Centinic, B. Jones, S.B. Weisberg, and D.A. Caron. 2006. Toxic blooms of the diatoms Pseudo-nitzschia spp. and urban river discharge into southern California coastal waters. EOS, Transactions, 87(36), suppl
13 Sherr, E.B., F. Rassoulzadegan, and B.F. Sherr. 1989. Bacterivory by pelagic choreotrichous ciliates in coastal waters of the NW Mediterranean Sea. Mar. Ecol. Prog. Ser., 55, 235-240   DOI
14 Spittler, P. 1973. Feeding experiments with tintinnids. Oikos, 15, suppl., 128-132
15 Verity, P.G. 1987. Abundance, community composition, size distribution, and production rates of tintinnids in Narragansett Bay, Rhode Island. Estuar. Coast. Shelf Sci., 24, 671-690   DOI
16 Choi, D.H, S.W. Kang, K.D. Song, and S.H. Huh. 1997a. Distribution and growth of bacteria in the hypertrophic Lake Shiwha. J. Korean Soc. Oceanogr., 2, 92-100
17 Dolan, J.R. and C.L. Gallegos. 2001. Estuarine diversity of tintinnids (planktonic ciliates). J. Plankton Res., 23, 1009-1027   DOI   ScienceOn
18 Shin, J.K., D.S. Kim, and K.J. Cho. 2000a. Dynamics of water environmental factors and phytoplankton before and after inflow of seawater in Shiwha Reservoir. J. Koraen Environ. Sci. Soc., 9, 115-123
19 Park, C. and S.H. Huh. 1997. Ecological stability of the Shiwha Lake evaluated by zooplankton distribution in the Lake Shiwha and adjacent coastal area. J. Korean Soc. Oceanogr., 2, 87-91
20 Burkill, P.H. 1982. Ciliates and other microplankton components of a nearshore food-web: Standing stocks and production processes. Ann. Inst. Oceanogr. Paris, 58(s), 335-350
21 Pierce, R.W. and J.T. Turner. 1994. Plankton studies in Buzzards Bay, Massachusetts, USA. IV. Tintinnids, 1987 to 1988. Mar. Ecol. Prog. Ser., 112, 235-240   DOI
22 Kim, Y.O., J. Chae, J.S. Hong, and P.G. Jang. 2007. Comparing the distribution of ciliate plankton in the inner and outer areas divided by an artificial breakwater. Mar. Environ. Res., (In Press)
23 Sherr, E.B. and B.F. Sherr. 1987. High rates of consumption of bacteria by pelagic ciliates. Nature, 325, 710-711   DOI
24 Dale, T. and E. Dahl. 1987. Mass occurrence of planktonic oligotrichous ciliates in a bay in southern Norway. J. Plankton Res., 9, 871-879   DOI
25 Smetacek, V. 1981. The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol., 63, 1-11   DOI
26 Park, J.K, E.S. Kim, S.R. Cho, K.T. Kim, and Y.C. Park. 2003. Annual variation of water qualities in the Shiwha Lake. Ocean and Polar Res., 25, 459-468   과학기술학회마을   DOI
27 Richard, S. and J.L Jamet. 2001. An unusnal distribution of Oithona nana Giesbrecht (1892) (Crustacea: Cyclopoida) in a bay: The case of Toulon Bay (France, Mediterranean Sea). J. Coast. Res., 17, 957-963
28 Muylaert, K. and K. Sabbe. 1999. Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/the Netherlands) and the Gironde (France). J. Mar. Syst., 22, 133-149   DOI   ScienceOn
29 Sherr, E.B., B.F. Sherr, and G.A. Paffenhofer. 1986. Phagotrophic protozoa as food for metazoans: A 'missing' trophic link in marine pelagic food web? Mar. Microb. Food webs, 1, 61-80
30 Sanders, R. W. 1987. Tintinnids and other microzooplanktonseasonal distributions and relationships to resources and hydrography in a Maine estuary. J. Plankton Res., 9, 65-67   DOI
31 Suh, S.W., J.H. Kim, I.T. Hwang, and H.K. Lee. 2004. Water quality simulation on an artificial estuarine Lake Shiwha, Korea. J. Mar. Syst., 45, 143-158   DOI   ScienceOn
32 Verity, P.G. 1986. Growth rates of natural Tintinnid populations in Narragansett Bay. Mar. Ecol. Prog. Ser., 131, 71-84
33 Jamet, J.L., G. Boge, S. Richard, C. Geneys, and D. Jamet. 2001. The zooplankton community in bays of Toulon area (northwest Mediterranean Sea, France). Hydrobiologia, 457, 155-165   DOI   ScienceOn
34 Urrutxurtu, I. 2004. Seasonal succession of tintinnids in the Nervion River estuary, Basque Country, Spain. J. Plankton Res., 26, 307-314   DOI   ScienceOn
35 Parsons, T., Y. Maita, and C.M. Lalli. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York. 173 p
36 Shin, J.K., D.S. Kim, and K.J. Cho. 2000b. Dynamics of inorganic nutrients and phytoplankton in Shiwha Reservoir. Korean J. Limnol., 33, 109-118
37 Despiau, S., J. Gourdeau, D. Jamet, C. Geneys, and J.L. Jamet. 2002. Seawater DMS in a perturbed coastal ecosystem. Hydrobiologia, 489, 107-115   DOI   ScienceOn
38 Barria de Cao, M.S., D. Beigt, and C. Piccolo. 2005. Temporal variability of diversity and biomass of tintinnids (Ciliophora) in a southwestern Atlantic temperature estuary. J. Plankton Res., 27, 1103-1111   DOI
39 Pierce, R.W. and J.T. Turner. 1992. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci., 6, 139-181
40 Dolan, J.R. and D.W. Coats. 1991. Changes in fine-scale vertical distributions of ciliate microzooplankton related to anoxia in Chesapeake Bay waters. Mar. Microb. Food Webs, 5, 81-93
41 Shannon, C.E. and W. Weaver. 1949. The Mathematical Theory of Communication. Univ. of Illinois Press, Urbana, USA. 117p
42 Admiraal, W. and L.A.H. Venekamp. 1986. Significance of tintinnid grazing during blooms of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth. J. Sea Res., 20, 61-66   DOI   ScienceOn
43 Choi, J.K., E.H. Lee, J.H. Noh, and S.H. Huh. 1997b. The study on the phytoplankton bloom and primary productivity in Lake Shiwha and adjacent coastal areas. J. Korean Soc. Oceanogr., 2, 78-86
44 Bakker, C. and W.J. Phaff. 1976. Tintinnida from coastal waters the south west Netherlands 1. The genus Tintinnopsis. Hydrobiologia, 50, 101-111   DOI   ScienceOn
45 Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943-948   DOI   ScienceOn
46 Heinbokel, J.F. 1978. Studies on the functional role of tintinnids in the southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol., 47, 177-189   DOI