• 제목/요약/키워드: Heterotrophic bacteria

검색결과 221건 처리시간 0.022초

Bacterial Community and Biological Nitrate Removal: Comparisons of Autotrophic and Heterotrophic Reactors for Denitrification with Raw Sewage

  • Lee, Han-Woong;Park, Yong-Keun;Choi, Eui-So;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1826-1835
    • /
    • 2008
  • An autotrophic denitrification reactor (ADR-l) and a heterotrophic denitrification reactor (HDR-2) were operated to remove nitrate and nitrite in an anoxic environment in raw sewage. The $NO_3$-N removal rate of ADR-l was shown to range from 52.8% to 78.7%, which was higher than the $NO_3$-N removal rate of HDR-2. Specific denitrification rates (SDNR) of ADR-l and HDR-2 were 3.0 to 4.0 and 1.1 to $1.2\;mgNO_3$-N/gVSS/h, respectively. From results of restriction fragment length polymorphism (RFLP) of the 16S rRNA gene, Aquaspirillum metamorphum, Alcaligenes defragrans, and Azoarcus sp. were $\beta$-Proteobacteria that are affiliated with denitritying bacteria in the ADR-l. Specifically, Thiobacillus denitrificans was detected as an autotrophic denitrification bacteria. In HDR-2, the $\beta$-Proteobacteria such as Denitritying-Fe-oxidizing bacteria, Alcaligenes defragrans, Acidovorax sp., Azoarcus denitrificans, and Aquaspirillum metamorphum were the main bacteria related to denitrifying bacteria. The $\beta$-and $\alpha$-Proteobacteria were the important bacterial groups in ADR-l, whereas the $\beta$-Proteobacteria were the main bacterial group in HDR-2 based on results of fluorescent in situ hybridization (FISH). The number of Thiobacillus denitrificans increased in ADR-l during the operation period but not in HRD-2. Overall, the data presented here demonstrate that many heterotrophic denitritying bacteria coexisted with autotrophic denitrifying bacteria such as Thiobacillus denitrificans for nitrate removal in ADR-l. On the other hand, only heterotrophic denitritying bacteria were identified as dominant bacterial groups in HDR-2. Our research may provide a foundation for the complete nitrate removal in raw sewage of low-COD concentration under anoxic condition without any external organic carbon or the requirement of post-treatment.

요인실험계획을 이용한 수도관 생물막 형성 영향 인자의 효과 분석 (Analysis of Effects of Factors Influencing Biofilm Formation in Drinking Water Distribution Pipe Using Factorial Experimental Design)

  • 박세근;최성찬;김영관
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.181-192
    • /
    • 2005
  • This study evaluated the effect of factors influencing the initial biofilm formation in drinking water distribution pipe by running experiments using a $2^{4-1}$ fractional factorial experimental design with a replicate. Important variables used for assessing biofilm formation included BDOC(biodegradable dissolved organic carbon), viable heterotrophic bacteria present in drinking water, water temperature, and shear stress at two levels each. Based on the statistical analysis of biofilm levels measured as attached HPC(heterotrophic plate count) and community-level assay, the main factors that have significant effects on biofilm formation were found to be viable heterotrophic bacteria and BDOC. Water temperature only exhibited significant effect on the levels of attached HPC, while shear stress was not a significant factor under given conditions. Moreover, the statistical analysis revealed that interactions between the important variables were not statistically significant at a 0.05 significance level.

Effects of an Artificial Breakwater on the Distributions of Planktonic Microbial Communities

  • Kim, Young-Ok;Yang, Eun-Jin;Kang, Jung-Hoon;Shin, Kyoung-Soon;Chang, Man;Myung, Cheol-Soo
    • Ocean Science Journal
    • /
    • 제42권1호
    • /
    • pp.9-17
    • /
    • 2007
  • The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semi-enclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. $0.4\;mg\;L^{-1}$) and high concentrations of inorganic nutrients (nitrogenous nutrients $>36\;{\mu}M$, phosphate $>4\;{\mu}M$) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than $10^6\;cells\;L^{-1}$ at the surface layer of the inner area, while its abundance was much lower ($10^3-10^4\;cells\;L^{-1}$) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to the T. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.

The Role of Heterotrophic Protists in the Planktonic Community of Kyeonggi Bay, Korea

  • Lee, Won-Je;Choi, Joong-Ki
    • Journal of the korean society of oceanography
    • /
    • 제35권1호
    • /
    • pp.46-55
    • /
    • 2000
  • In order to understand the role of heterotrophic protists in the coastal waters off Inchon, abiotic and biotic factors were measured from January 1992 to February 1993. Microbial carbon biomass (mean212.9$^{\pm}$119.1 $^{\mu}$gC/1) was composed of 4.2% bacteria, 0.3% cyanobacteria, 12.l% autotrophic nanoflagellates, 6.6% heterotrophic nanoflagellates, 5.8 heterotrophic ciliates and 71.0% diatom and Mesodinium spp. The carbon biomass of heterotrophic protists (heterotrophic nanoflagellates and ciliates) was highest in October 1992 (mean 37.8$^{\pm}$22.5 $^{\mu}$gC/1), and was low in August 1992 (mean 21.2$^{\pm}$10.8 $^{\mu}$gC/1) and in February 1993 (mean 19.5$^{\pm}$6.4 $^{\mu}$gC/1). However, the contribution of heterotrophic protists to total microbial carbon biomass was higher in January 1992 and February 1993 (about 21%) when the phytoplankton was dominated by nanoplankton than in August and October (about 9%) when large diatoms occurred in large numbers. This study suggests that in Kyeonggi Bay heterotrophic protists might play a more important role as prey for zooplankton and as consumers of bacteria & small phytoplankton in less productive seasons (especially winter) than in productive seasons (autumn), and that the classic trophic pathway from diatoms through copepods to fish might be dominant nearly every season.

  • PDF

Reduction of bacterial regrowth in treated water by minimizing water stagnation in the filtrate line of a gravity-driven membrane system

  • Yi, JongChan;Lee, Jonghun;Jung, Hyejin;Park, Pyung-Kyu;Noh, Soo Hong
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.17-23
    • /
    • 2019
  • This study monitored changes in the level of heterotrophic bacteria in the filtrate and investigated the effect of stagnant water on it, using a batch-operated, gravity-driven membrane system for household water treatment. The filtration test was carried out in the presence and absence of stagnant water in the filtrate line. The results showed that stagnant water accelerated the heterotrophic bacteria levels, measured by heterotrophic plate count, even though the heterotrophic plate count of the filtrate finally increased up to $10^5CFU/mL$ regardless of the presence of stagnant water. When the change in heterotrophic plate count of a batch was monitored over filtration time, heterotrophic plate count of the filtrate rapidly decreased within 5 min for each batch filtration. Biofilm formation on the filtrate line was observed in the presence of stagnant water. The biofilm fully covered the filtrate line and contained numerous microorganisms. During storage after filtration, heterotrophic plate count increased exponentially. To improve the filtrate quality of a filtration-based household water treatment system, therefore, the stagnant water in the filtrate line should be minimized, the filtrate produced at the first 5 min is recommended not to be used as potable water, and the storage of filtrate should be avoided.

통영 바다목장 해역의 종속영양세균 군집의 연차적 분포 (Annual Distribution of Heterotrophic Bacterial Community in the Marine Ranching Ground of Tongyeong Coastal Waters)

  • 김말남;이한웅;이진환
    • 환경생물
    • /
    • 제25권3호
    • /
    • pp.273-278
    • /
    • 2007
  • [ $2003{\sim}2007$ ]년 통영 바다목장 해역 5개 정점을 대상으로 표층수와 저층수의 종속영양세균의 개체수를 측정하고, 종속영양세균 군집의 종조성 및 우점종을 분석하였다. 종속영양세균은 겨울이나 봄 및 가을에 비하여 해수의 온도가 높은 여름에 더 많이 검출되었으며, 정점별 변화는 특별한 변화 경향이 없었다. 2003년 10월 및 2004년 9월에는 태풍과 집중호우의 영향으로 표층수와 저층수의 개체수가 큰 차이를 나타내지 않거나 저층수의 개체수가 표층수보다 오히려 더 많은 경우도 있었다. 통영 바다목장 해역의 종속영양세균 개체수는 해를 거듭할수록 감소하는 추세를 나타내었다. 종속영양세균 군집의 종조성은 Pseudomonas fluorescens TY1, Pseudomonas stutzeri TY2, Acinetobacter lwoffii TY3, Sphingomonas paucimobilis TY4, Burkholderia mallei TY5, Pasteurella haemolytica TY6, Pasteurella multocida TY7, Comamonas acidovorans TY8, Actinobacillus ureae TY9 및 Chryseobacterium indologenes TY10으로 조사되었고, P. fluorescens TY1과 A lowffii TY3이 우점종으로 분석되었다.

Bacterial Regrowth in Water Distribution Systems and Its Relationship to the Water Quality: Case Study of Two Distribution Systems in Korea

  • Yoon, Tae-Ho;Lee, Yoon-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.262-267
    • /
    • 2004
  • This study was done to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution systems, which belongs to both K and Y water treatment plant of S city in Korea. The data analyzed in the distribution systems show that the free chlorine residuals decreased from 0.10 to 0.56 mg/l for K, and 0.51 to 0.78 mg/l for Y. The decay of free chlorine is clearly higher in both March and August than in January. The HPC in the distribution systems are ranged from 0 to 40 cfu/ml for K, 0 to 270 cfu/ml for Y, on $R_2$A medium. In particular, its level is relatively high at the consumer's ground storage tanks, taps, and the point-of-end area of Y. The predominant genera that were studied in the distribution systems were Acinetobacter, Sphingomonas (branch of Pseudomonas), Micrococcus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria increases in the end-point area. Most of them are either encapsulated cells or of Gram-positve cocci. In conclusion, the point-of-end area in distribution systems shows the longer flow distance from the water treatment plants, along with a greater diversity and a higher level of heterotrophic bacteria, due to the significant decay of free chlorine residuals.

Kinetics of nitrification and acrylamide biodegradation by Enterobacter aerogenes and mixed culture bacteria in sequencing batch reactor wastewater treatment systems

  • Madmanang, Romsan;Jangkorn, Siriprapha;Charoenpanich, Jittima;Sriwiriyarat, Tongchai
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.309-317
    • /
    • 2019
  • This study evaluated the kinetics of acrylamide (AM) biodegradation by mixed culture bacteria and Enterobacter aerogenes (E. aerogenes) in sequencing batch reactor (SBR) systems with AQUASIM and linear regression. The zero-order, first-order, and Monod kinetic models were used to evaluate the kinetic parameters of both autotrophic and heterotrophic nitrifications and both AM and chemical oxygen demand (COD) removals at different AM concentrations of 100, 200, 300, and 400 mg AM/L. The results revealed that both autotrophic and heterotrophic nitrifications and both AM and COD removals followed the Monod kinetics. High AM loadings resulted in the transformation of Monod kinetics to the first-order reaction for AM and COD removals as the results of the compositions of mixed substrates and the inhibition of the free ammonia nitrogen (FAN). The kinetic parameters indicated that E. aerogenes degraded AM and COD at higher rates than mixed culture bacteria. The FAN from the AM biodegradation increased both heterotrophic and autotrophic nitrification rates at the AM concentrations of 100-300 mg AM/L. At higher AM concentrations, the FAN accumulated in the SBR system inhibited the autotrophic nitrification of mixed culture bacteria. The accumulation of intracellular polyphosphate caused the heterotrophic nitrification of E. aerogenes to follow the first-order approximation.

수돗물 배급수 계통의 유리잔류염소농도에 따른 종속영양세균의 거동에 관한 연구 (Heterotrophic Bacteria in Terms of Free Chlorine Residuals in water Distribution Systems)

  • 윤태호;이윤진;이옥재;이의광;김현;이동찬;남상호
    • 한국환경보건학회지
    • /
    • 제28권3호
    • /
    • pp.9-18
    • /
    • 2002
  • This study was to observe the occurrence of heterotrophic bacteria in terms of free chlorine residuals in two different water distribution systems belong to both K and Y water treatment plant. The data analyzed in this study showed that in distribution systems(DS), the free chlorine residuals were decreased from 0.10 to 0.56 ㎎/1 for K, and 0.51 and 0.78 ㎎/l for Y The decay of free chlorine were clearly higher in both March and August than those in January. The HPC in DS were ranged from 0 to 40 CFU/ml for K,0 to 270 CFU/ml for Y, on R2A medium. In particular, Its level was relatively high at consumers' ground storage tanks, taps and point-of-end area of Y, The predominant genera found in the distribution systems were Acinetobacter, Sphingomonas (branch of Pseudomonas), Microroccus, Bacillus, Staphylococcus. The diversity of heterotrophic bacteria was increased in the end-point area. Most of them were either encapsulated cells or cocci of gram-positve. In conclusion, the point-of-end area in distribution systems showed that the longer flow distance from WTP the greater diversity and higher level of heterotrophic bacteria due to the significant decay of free chlorine residuals.

16S rDNA염기서열에 의한 불가사리(Asterias amurensis) 장내에서 분리된 종속영양세균 군집의 다양성 (The Diversity of Heterotrophic Bacteria Isolated from Intestine of Starfish(Asterias amurensis) by Analysis of 16S rDNA Sequence)

  • 최강국;이오형;이건형
    • The Korean Journal of Ecology
    • /
    • 제26권6호
    • /
    • pp.307-312
    • /
    • 2003
  • 본 연구는 2000년 7월에 전남 장흥군에서 채집한 불가사리의 장내에 존재하는 종속영양세균의 다양성에 대해서 알아보았다. 불가사리 장내에 존재하는 균체수를 측정하였으며, 순수 분리된 균주를 대상으로 16S rDNA 증폭기법을 이용하여 세균의 다양성을 조사하였다. 불가사리 장내에 분포하는 종속영양세균의 균체수는 8.65${\pm}$0.65${\times}10^3\;dfu\;g^{-1}$이었다. 29 균주의 세균이 순수 분리되었으며, 그 중 그람양성 세균은 분리된 균주의 59% (17균주)를 차지하였다. 불가사리 장내에서 분리된 균주는 Bacillus속, Microbacterium 속, 그리고 Marinobacter 속 등이 우점이었으며, 이외에도 Staphylococcus 속, Psychrobacter 속, Paracoccus 속, Erythrobacter 속, Zoogloea 속, Kocuria 속과 Arthrobacter 속 등이 포함되었다. 분리된 균주 가운데 Bacillus 속에 속하는 8균주 중 3균주는 type strain과 97% 이상의 유사도를 보인 반면, 5 균주는 유사도가 90%로 비교적 낮은 유사도를 보여 현재까지 알려지지 않은 신종일 가능성이 높다고 하겠다.