• Title/Summary/Keyword: Heterologous

Search Result 465, Processing Time 0.027 seconds

Effects of Heterologous Expression of Thioredoxin Reductase on the Level of Reactive Oxygen Species in COS-7 Cells

  • Kang, Hyun-Jung;Hong, Sung-Min;Kim, Byung-Chul;Park, Eun-Hee;Ahn, Kisup;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • Thioredoxin reductase (TrxR), a component of the redox control system involving thioredoxin (Trx), is implicated in defense against oxidative stress, control of cell growth and proliferation, and regulation of apoptosis. In the present study a stable transfectant was made by introducing the vector pcDNA3.0 harboring the fission yeast TrxR gene into COS-7 African green monkey kidney fibroblast cells. The exogenous TrxR gene led to an increase in TrxR activity of up to 3.2-fold but did not affect glutathione (GSH) content, or glutaredoxin and caspase-3 activities. Levels of reactive oxygen species (ROS), but not those of nitric oxide (NO), were reduced. Conversely, 1-chloro-2,4-dinitrobezene (CDNB), an irreversible inhibitor of mammalian TrxR, enhanced ROS levels in the COS-7 cells. After treatment with hydrogen peroxide, the level of intracellular ROS was lower in the transfectants than in the vector control cells. These results confirm that TrxR is a crucial determinant of the level of cellular ROS during oxidative stress as well as in the normal state.

Comparison of Promoters Suitable for Regulated Overexpression of $\beta$-Galactosidase in the Alkane-Utilizing Yeast Yarrowia lipolytica

  • Thomas Juretzek;Hui-Jie wang;Nicaud, Jean-Marc;Stephan Mauersberger;Gerold Barth
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.320-326
    • /
    • 2000
  • Promoters of the genes G3P, ICL1, POT1, POX1, POX2 and POX5 of the yeast Y. lipolytica were studied in respect to their regulations and activities during growth on different carbon sources. The aim of this study was to select suitable promoters for high expression of heterologous genes in this yeast. For this purpose the promoters were fused with the reporter gene lacZ of E. coli and integrated as single copies into the genome of Y. lipolytica strain PO1d. The measurement of expressed activities of ${\beta}$-galactosidase revealed that pICL1, pPOX2 and pPOT1 are the strongest regulable promoters available for Y. lipolytica, at present. pPOX2 and pPOT1 were highly induced during growth on oleic acid and were completely repressed by glucose and glycerol. pICL1 was strongly inducible by ethanol besides alkanes and fatty acids, however, not completely repressible by glucose or glycerol. Ricinoleic acid methyl ester appeared as a very strong inducer for pPOT1 and pPOX2, in spite of that it inhibited growth of Y. lipolytica transformants.

  • PDF

Expression of GRP78 Enhance-CAT Fusion Constructs Microiniected into Xenopus Iceuis Oocytes (Xenopus 난자에 미세주입된 GRP78 Enhancer-CAT 이형접합자의 발현)

  • 김용규;김규성박경숙
    • The Korean Journal of Zoology
    • /
    • v.37 no.2
    • /
    • pp.137-143
    • /
    • 1994
  • Microiniection of genes Into Xenopus laeuis oocvtes in highly useful in the annvsis of gene regulation, since a large number of oocvtes can be injected in a relatively short time. The GRP78 enhancer has been identified to a 291-bp fragment that spans a region of GRP78 promoter between -378 and -87 (Lin et at., 1986: Kim and Lee, 1989). We examined whether this GRP78 enhancer is effective in directing expression of heterologous gene in Xenopus laeuis oocytes. The chloramphenicol acetvltransferase (CAT) fusion constructs containing the GRP78 promoter and the SV4O early promoter were constructed and were injected into nuclei of Xencpus laeuis oocvtes. The recipient oocvtes were then assayed for CAT activity. The fusion constructs exhibited higher activity as compared to SV40 promoter tested here. The GRP78 enhancer showed 8.5- to 9.2-fold enhancement over that of the SV4O promoter. The orientation of GRP78 enhancer with respect to the direction of CAT transcription unit had no significant effect. Thus, the GRP78 enhancer is a viable candidate for the construction of expression system for use in Xenopus laevss oocvtes and will be important for the studY of a gene expression throughout development.

  • PDF

Study of a Tobacco MADS-Box Gene Triggering Flower Formation

  • Chung, Yong-Yoon;N, Gynheung-A
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.10-18
    • /
    • 1996
  • Recently, we have reported a rice MADS-box gene, OsMADS1, as a molecular factor triggering flower formation; this has been well studied in a heterologous system (Chung et al., 1994). In order to study whether the OsMADS1 homolog exists in other plant species, the OsMADS1 cDNA was used as a probe to screen a tobacco cDNA library, and a potential homolog, NtMADS3, was isolated. Sequence analysis revealed that the gene shares 56.1% identity in whole amino acids with OsMADS1. Like OsMADS1, the NtMADS3 gene starts to express at a very early stage of flower development, and the expression continues up to flower maturation. In the tobacco flower, the gene is expressed in whorl 2,3 and 4, corresponding to the petal, stamen, and carpel, respectively. Upon ectopic expression in the homologous system, NtMADS3 caused a trasition from inflorescence shoot meristem into floral meristem, reducing flowering time dramatically. These phenotypes strongly suggest the NtMADS3 gene is the OsMADS1 homolog of tobacco. Hybrids between the OsMADS1 and the NtMADS3 plants were also generated. The hybrids flowered even earlier than these two transgenic plants. The detailed studies are discussed here.

  • PDF

Agrobacterium-Mediated Transformation of Flammulina velutipes with NaOH Treatment (NaOH처리에 의한 Agrobacterium이용 팽이균사체 형질전환)

  • Shin, Dong-Il;Park, Hee-Sung
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.235-238
    • /
    • 2011
  • Agrobacterium harboring vector pCHBs with hygromycin phosphotransferase(hph) and hepatitis B virus surface antigen(HBsAg)gene was transformed into the mycelial culture of Flammulina velutipes. In particular, mild NaOH solution was treated to the mycelia before Agrobacterium infection step. This was purposed to generate putative surface wounds in the mycelial cell walls. The results showed that hygromycin-resistant($hyg^r$) mycelia could be obtained only from NaOH-treated mycelia but not from intact mycelia. The integration of $hyg^r$ gene in fungal genome was confirmed by PCR. In addition, a single transgene integration and heterologous protein expression in F. velutipes could be verified by Southern blot hybridization and western blot analysis, respectively. This study demonstrated an efficient tool for the Agrobacterium-mediated transformation of F. velutipes mycelia.

A Proline- and Leucine-rich 19 Amino Acid Oligopeptide from FS1 Functions as a Transcriptional Repression Domain

  • Cho, Yong-Seok;Baek. Gum-Hee;Yoon, Sang-Soon;Han, Dong-Uck;Han, Kyu-Hyung
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.647-651
    • /
    • 1997
  • We have used a transient expression assay employing Drosophila S2 cells to study the transcriptional repression activity of a 27 amino acid residue-long repression domain FS1 which was generated by a frame-shift in a pair-rule gene, even-skipped of Drosophila melanogaster. In an attempt to define a minimal requirement for the repression activity, we constructed a series of truncation mutant forms of the FS1, fused to a heterologous GAL4 DNA-binding domain, and measured their activities. All of the mutant forms, including the GAL4-FS1 (5-23) which retains the smallest number (19) of amino acid residues of FS1, were found to repress an initiator, a minimal TATA-lacking promoter, in a GAL4-binding-site-dependent manner. These findings suggest that a 19 amino acid residue-long region, rich in proline and leucine residues, is a transcriptional repression domain and may interact with the general transcription machinery.

  • PDF

Comparisons of Recombinant Protein Expression in Diverse Natural Isolates of Escherichia coli

  • Jung, Yuna;Lim, Dongbin
    • Molecules and Cells
    • /
    • v.25 no.3
    • /
    • pp.446-451
    • /
    • 2008
  • We assessed heterologous protein expression in 64 strains obtained from the Escherichia coli Reference (ECOR) collection, a collection representing diverse natural E. coli populations. A plasmid generating a glutathione S-transferase and plant carbonic anhydrase fusion protein (GST-CA) under the control of the tac promoter was introduced into the ECOR strains, and the quantity of the fusion protein was determined by SDS-PAGE. The foreign protein was generated at various levels, from very high (40 strains, high producers) to very low (six strains, low producers). Immunoblotting showed that the high producers expressed approximately 250-500 times more GST-CA protein than the low producers. The results of semi-quantitative RT-PCR showed that the low producers generated mRNA levels comparable to those of the high producers, thereby suggesting that, at least in this case, inefficient translation is a major cause of the low production. We introduced a different plasmid, which expressed a maltose binding protein and plant guanylate kinase fusion protein (MBP-GK) into the six low producers. Interestingly, five of these expressed MBP-GK at very high levels. Thus, we conclude that the production of a particular protein from an expression vector can vary considerably, depending on the host strain. Strains in the ECOR collection could function as useful alternative hosts when a desired level of protein expression is not obtained from commonly used strains, such as E. coli K12 or B derivatives.

Evaluation of a New Episomal Vector Based on the GAP Promoter for Structural Genomics in Pichia pastoris

  • Hong In-Pyo;Anderson Stephen;Choi Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1362-1368
    • /
    • 2006
  • A new constitutive episomal expression vector, pGAPZ-E, was constructed and used for initial screening of eukaryotic target gene expression in Pichia pastoris. Two reporter genes such as beta-galactosidase gene and GFPuv gene were overexpressed in P. pastoris. The expression level of the episomal pGAPZ-E strain was higher than that of the integrated form when the beta-galactosidase gene was used as the reporter gene in P. pastoris X33. The avoiding of both the integration procedure and an induction step simplified the overall screening process for eukaryotic target gene expression in P. pastoris. Nine human protein targets from the Core 50, family of Northeast Structural Genomics Consortium (http://www.nesg.org), which were intractable when expressed in E. coli, were subjected to rapid screening for soluble expression in P. pastoris. HR547, HR919, and HR1697 human proteins, which had previously been found to express poorly or to be insoluble in E. coli, expressed in soluble form in P. pastoris. Therefore, the new episomal GAP promoter vector provides a convenient and alternative system for high-throughput screening of eukaryotic protein expression in P. pastoris.

A New Deoxyhexose Biosynthetic Gene Cluster in Streptomyces griseus ATCC10137: Heterologous Expression of dTDP-D-Glucose 4,6-Dehydratase Gene

  • Kim, Sang Suk;Bang, Jung-Hee;Hyun, Chang-Gu;Kim, Joo-Woo;Han, Jae-Jin;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.136-140
    • /
    • 2000
  • A novel 6-deoxyhexose biosynthetic gene cluster different from the one for the biosynthesis of streptomycin was isolated from Streptomyces griseus using specifically designed PCR primers to compare the sequence of known dTDP-glucose synthase genes. We cloned a 5.8-kb DNA from Streptomyces griseus ATCC10137, which contained the 4-ketoreductase homologue (grsB), dTDP-glucose synthase (grsD), and dTDP-glucose 4, 6-dehydratase (grsE) genes. Escherichia coli cultures containing plasmid of the PCR product which encoded the grsE region under the controUed T7 promoter were able to catalyze the formation of dTDP-4-keto-6-deoxy-D-glucose from TDP-glucose. The enzyme showed high substrate specificity, being specific to only dTDP-glucose that is known to be incorporated into secondary metabolites such as antibiotics.

  • PDF

Strain Improvement by Overexpression of the laeA Gene in Monascus pilosus for the Production of Monascus-Fermented Rice

  • Lee, Sang Sub;Lee, Jin Hee;Lee, Inhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.959-965
    • /
    • 2013
  • Monascus species have been used to produce fermented rice called Monascus-fermented rice (MFR). To improve a Monascus strain via activation of secondary metabolite (SM) gene clusters for use in the production of MFR, we overexpressed an ortholog of the laeA gene, which encodes a global positive regulator of secondary metabolism under the control of the strong heterologous Aspergillus nidulans alcA promoter in Monascus pilosus. The OE::laeA transformant produced more SMs, including those not detected under uninduced conditions. MFR produced using the M. pilosus OE::laeA strain contained 4 times more monacolin K, a cholesterol-lowering agent, than MFR produced using the wild-type strain. In addition, pigment production was remarkably increased, and the antioxidant activity was increased as well. The results from this study suggest that Monascus species, which are important industrial fermentative fungi in Asia, can be improved for the production of functional foods by overexpressing the laeA gene.