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Microinjection of genes into Xenopus laevis oocytes in highly useful in the
analysis of gene regulation, since a large number of oocytes can be injected in a
relatively short time. The GRP78 enhancer has been identified to a 291-bp fragment
that spans a region of GRP78 promoter between -378 and ~-87 (Lin et al., 1986;
Kim and Lee, 1989). We examined whether this GRP78 enhancer is effective in
directing expression of heterologous gene in Xenopus laevis oocytes. The
chloramphenicol acetyltransferase (CAT) fusion constructs containing the GRP78
promoter and the SV40 early promoter were constructed and were injected into
nuclei of Xenopus laevis oocytes. The recipient oocytes were then assayed for CAT
activity. The fusion constructs exhibited higher activity as compared to SV40
promoter tested here. The GRP78 enhancer showed 8.5- to 9.2-fold enhancement
over that of the SV40 promoter. The orientation of GRP78 enhancer with respect to
the direction of CAT transcription unit had no significant effect. Thus, the GRP78
enhancer is a viable candidate for the construction of expression system for use in
Xenopus laevis oocytes and will be important for the study of a gene expression

throughout development.

KEY WORDS: microinjection, Xenopus oocytes, Glucose Regulated-Protein.

Since the Xenopus oocytes are much larger (1.
2 mm in diameter) than oocytes of other such as
sea urchin (80 to 180 um), a large number of
Xenopus oocytes can be injected with DNA in a
relatively short time. Usually, a large number of
oocytes are required to be analyzed for an
accurate statistical evaluation. The Xenopus
oocytes have proven to be highly useful in the
analysis of gene regulation (Etkin, 1982; Etkin et
al., 1983). Microinjection of genes into Xenopus
oocytes has been used to study the transcription.
The injection of genes with mutated promoter
region has enabled the identification of regulatory
elements required for transcription {Groschedl and
Birnstiel, 1980). The Xenopus oocyte system has
also been used successfully to identify a factor

capable of stimulating sea urchin early H2b gene
transcription (Mous et al., 1985).

Rat gene encoding GRP78, has been isolated
and sequenced (Wooden et al., 1988). GRP78
shares a common peptide domain near the N-
terminal region with four proteins of the 70-kDa
heat shock protein (hsp70) family (Chappell et al.,
1986). The GRP78 is identical to the
immunoglobulin heavy chain binding protein (BiP).
Since the GRP78 and BiP have been localized to
the endoplasmic reticulum (ER) (Zala et al., 1988,
Bole et al., 1986), they may function to prevent
aggregation of immunoglobulin heavy chain in
pre-B cells. Thus, GRP78 may serve a more
general role in the assembly and stabilization of
secreted and membrane-bound proteins in the ER
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of many different cell types.

An enhancer element has been localized in viral
and cellular genes at positions 5° or 3’ to the
promoter, and within intron sequences (Khoury
and Gruss, 1983; Mercoia et al., 1983; Serfling
et al., 1985). It functions in an orientation- and
position- independent manner to stimulate the
transcriptional activities of promoters. When
trans-acting factors bind to enhancer sequence
which is cis-acting element, transcriptional
regulation may be stimulated actively (Ephrussi et
al., 1985). The GRP enhancer has been identified
to a 291-bp fragment between positions -87 and -
375 within the GRP78 promoter (Lin et al.,
1986; Kim and Lee, 1989). In this study, we
further examined the function of the GRP78
enhancer using Xenopus oocyte system by fusing
it with SV40 early promoter which is linked to
CAT transcription unit.

Materials and Methods

Preparation of oocytes

Xenopus females were anesthetized by
hypothermia, and oocytes were surgically
removed. The oocytes were teased apart into
group of around 10 and rinsed three times in
Barth'’s solution containing streptomycin {50 mg//}
and penicillin (50 mg/I).

Plasmids

The plasmid pSV1BCAT is equivalent to the
pSVXCAT previously described (Celander and
Haseltine, 1984), with the Xho [ site changed to a
Bgl 1l site. Its unique Bgl Il and Bam HI sites were
used for 5" insertions. A 291-bp fragment
extending from the Stu I site at position -87 to
Sma 1 site at position -375 within the GRP
promoter was subcloned into the Bgl Il site of
pSVI1BCAT in the same orientation [pSV1B(291r)
CAT] and in the reverse orientation [pSV1B(291w)
CAT] as the CAT-transcriptional unit. The plasmid
pE43 was generated by the BAL 31 digestion of
PI10 as described (Chang et al., 1987). This
plasmid contains the —480 to —37 fragment from
the GRP78 promoter subcloned into a CAT vector
in the same orientation.
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Oocytes culture and Microinjection

Microinjection was performed as described
(Etkin and Maxson, 1980: Colin, 1986). Twenty
nl of 200 ug/ml plasmids were injected into the
nuclei of Xenopus oocytes. Recipient oocytes
were then incubated for 20 hours in Barth’s
solution containing 88 mM NaCl, 1 mM KCl, 2.4
mM NaHCOgj, 10 mM HEPES (pH 7.5}, 0.82
mM MQSO47H20, 0.33 mM Ca(NO3)2.4H20, 0.
41 mM CaCl,.6H,0.

Protein extracts

Protein was prepared as described (Maxson et
al., 1988). Oocytes injected were lysed with low-
salt buffer and ammonium sulphate [(NH4)5SO4)
was added to a final concentration of 0.36 M.
Lysed oocytes were homogenized and centrifuged
at 10,000 xg for 5 min. the protein was
precipitated by further addition of 55% (NH4)»,SO,4
to the supernatant and the precipitated protein
was collected by centrifugation. The pellet was
then suspended in solution containing 10mM
HEPES (pH7.0), 0.1 mM EDTA, 0.1 mM K(l,
20% glycerol, 0.5 mM PMSF and 1 mM DTT.
Protein was dialyzed for 16 hour at 4°C against
the same medium. Protein concentration were
determined by Bio-Rad.

CAT assay

Equal amounts (100 ug) of protein extracted
from Xenopus oocytes were used in each CAT
assay. Each CAT assay was repeated five times.
About 4 x 105 cpm of [14C] Chloramphenicol
{Cm) was used for each assay, which was analyzed
on TLC plates (Whatman) as described (Gorman
et al., 1982). The TLC plates were exposed to
Kodak XO-mat films to detect the acetylated [14C]
Cm. For quantitation of percent conversion, the
spots corresponding to the acetylated and non-
acetylated Cm were excised from the TLC plates
and counted in a liquid scintillation counter. The
background conversion level was about 60 cpm in
mock samples.
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Results and Discussion

Microinjection of genes and nuclei has been
used to study transcription in amphibian oocytes
and eggs (Gurdon et al., 1971). The Xenopus
oocyte system has been used to identify a
regulatory element required for transcription by
injection of genes with mutated region (Grossched|
et al., 1980). It would be useful, therefore, to
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study for developmental switch in the rate of
transcription which is caused by change in the
synthesis of transcription factor during the
development (Maxson et al., 1988). Previously, it
has been shown that the GRP enhancer stimulates
the expression of heterologous gene after its gene
was transfected into mouse embryonic cells (Kim
et al., 1990). In this study, we examined for the
first time whether heterologous gene under the
direction of a strong promoter is highly expressed
in Xenopus laevis oocytes.
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Fig. 1. Sequence of the GRP78 promoter and its first exon. The sequence is numbered starting from the major mRNA
cat site (—) as +1. Bases downstream of this site are numbered positively and bases upstream are numbered negatively.
The TATAA and CCAAT box are boxed. The GRP78 enhancer region between —378 and —-87 is underlined. The wave
line show the 17-mer and 24-mer used in primer extension experiment. The black triangle (W) indicates the proteolytic
cleavage site that excises the 18 amino acid leader sequence. The open triangle (V) indicates the 5' splice site of the
first exon/intron junction. The sites of restriction enzyme are noted. Dashed line shows the conserved peptide shared

other stress-induced protein.
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The GRP78 promoter region and the first exon
of the rat GRP78 gene are shown in Fig. 1.
Besides having strong promoter activity, the 291-
bp Smal-Stul fragment immediately 5 to the
TATA sequence can act as an enhancer to
increase the transcriptional activities of
heterologous promoter (Lin et al., 1986). This
GRP78 enhancer has been localized to 291-bp
fragment extending between positions -87 to

—-375 within the GRP78 promoter (Kim et al.,
1989). This enhancer contains four copies of the
CCAAT motif, one of which exists in a reverse
orientation. A sequence (GCCGCT TCGAAT
CGGC) which is highly conserved within the
GRP78 promoters from different species, is found
at positions -169 to —154, and has a interesting
feature that it is palindromic (Redendez et al.,
1988). In addition, the sequence (GGCTG
GGGGGQG) resembling that of the binding site for
the transcription activation factor AP2 (Imagawa
et al., 1987) is found. Detailed analysis of the
nucleotide sequence also revealed sequence
homologies to other viral and celiular core
enhancers and an abundance of repeat elements
(Lin et al., 1986).

The GRP78 enhancer that spans -378 to —-87
was cloned into Bgl Il site of the SV40-CAT
plasmid (pSV401BCAT) to create the fusion gene
in same orientation [pSV40(291r)CAT] or in an
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opposite orientation [pSV40(291w)CAT] with
respect to CAT transcription unit. The plasmid,
pE43, contains 443-bp region spanning from
—-480 to —37 that included the GRP78 enhancer,
a associated upstream sequence of additional
GRP78 promoter and downstream sequence of
own TATA box together (Fig. 2). We have
attempted to determine whether inserted GRP78
enhancer is effective in direct expression of a
heterologous gene in Xenopus oocytes. To test
these, the plasmid constructs were injected into
nuclei of Xenopus laevis oocytes and assayed for
CAT activity. For comparison, the percentages of
conversion of the chloramphenicol into its
acetylated form were quantitated in each sample,
and the enhancer-less parental plasmid
(pSV1BCAT) was set to unity. The average values
from the experiments were summarized in Table
1. Most eggs survived 20 hrs incubation, after
injection with Barth’s solution and plasmids.
Smaller (2 pm internal diameter) injection pipets
were used for this experiment as they may
improve the rate of egg survival. Xenopus laevis
oocytes after microinjectin were used to assay the
CAT activity (Fig. 3). The CAT activities were not
observed in control eggs injected with Barth’s
solution (Fig. 1B; la, 2a, 3a, and 4a). Since the
frog egg can be readily activated by pricking the
egg cortex with a needle or micropipette (Wolf,

CAT
VE43 S S }M
CAT
pSVIB(291w)CAT A—M S S E}
CAT
pSV1B(291r)CAT ——///) S ¢ 212121} Atlo)
Bgl Il

pSV1BCAT

V7

. CAT
TR

Fig. 2. Structure of CAT fusion constructs. Open bar, GRP78 enhancer sequence (S; Sma I or Stu I site within the
GRP78 promoter sequence, open bar arrow; orientation of insertion) Shaded bar, upstream sequence of 291-bp of
GRP78 enhancer sequence. Deviant bar, SV40 early promoter sequence. Darked Bar, CAT sequence. AT, TATA region
within the SV40 early promoter and GRP78 promoter sequence. 21, a nearly perfect triple tandem of a highly G+C-
rich 21-bp. O, origin of replication. Bgl 1, cloning site for GRP78 enhancer. lines, prokaryotic vector sequence.
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Table 1. Results of injecting plasmids into Xenopus laevis oocytes

Oocytes injected with Barth'’s No. of No. of CAT activity
sol. and plasmids experiments oocytes Survivors No. of assay No. of cocytes  relative activity
per assay m %)
Barth'’s sol. 4 59 55 3 10 1
pSV1BCAT 6 78 73 5 10 1
Barth’s sol. 5 88 82 3 10 1
pSV1B(29Ir)CAT 6 120 115 5 10 87
Barth’s sol. 5 72 67 3 10 1
pSV1B(29Iw)CAT 7 102 98 5 10 85
Barth's sol. 3 55 53 3 10 1
pE43 5 83 81 5 10 9.2

s b b

i

a b

Fig. 3. Promoter activity of CAT fusion consturcted in Xenopus laevis. Xenopus oocytes were injected with the
plasmids indicated. Equal amounts of protein from the Xenopus oocytes injected with plasmids were assayed for CAT
activity. The position of chloramphenicol (CM) and its acetylated form (1 Ac, 3 Ac) are shwon.

1974), we injected with Barth's solution to
eliminate the possibility that activation of egg after
microinjection of plasmids may contribute to the
CAT activity. When eggs were injected with
pSV1BCAT, no CAT activities were observed
(Table 1 and Fig. 1B;1b). The commonly used
SV40 early promoter is active in cells derived from

a wide variety of tissues and species (Gorman et
al., 1982). However, it Xenopus oocytes the
CAT activity under the control of SV40 promoter
was not observed, indicating that a negative
regulatory factor may be present in oocytes. In
embryonic cell, the SB40 promoter also does not
stimulate transcription unit to which it is linked,
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since embryonic cell such as F9 contains a
negative regulatory factor that acts on viral
enhancers to prevent expression of transcription
units to which they are linked (Arizumi et al.,
1989; Gorman et al., 1985). Insertion of 291-bp
GRP78 enhancer resulted in increses in the CAT
activities. It showed 8.5- to 9.2- fold enhancement
over that of the SV early promoter (Table 1 and
Fig. 3B; 3b, 4b). The orientation of GRP78
enhancer with respect to the direction CAT
transcription had no significant effect (Table 1 and
Fig. 3B; 2b, 3b). This result is similar to that
observed in hamster fibroblast cells (Kim and Lee,
1989). Therefore, the GRP78 enhancer is a viable
candidate for the construction of an expression
system for use in embryonic cells and in Xenopus
oocytes. The GRP78 enhancer will also be useful
for the study of gene expression during
development.
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