DOI QR코드

DOI QR Code

Strain Improvement by Overexpression of the laeA Gene in Monascus pilosus for the Production of Monascus-Fermented Rice

  • Lee, Sang Sub (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University) ;
  • Lee, Jin Hee (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University) ;
  • Lee, Inhyung (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University)
  • Received : 2013.03.11
  • Accepted : 2013.05.03
  • Published : 2013.07.28

Abstract

Monascus species have been used to produce fermented rice called Monascus-fermented rice (MFR). To improve a Monascus strain via activation of secondary metabolite (SM) gene clusters for use in the production of MFR, we overexpressed an ortholog of the laeA gene, which encodes a global positive regulator of secondary metabolism under the control of the strong heterologous Aspergillus nidulans alcA promoter in Monascus pilosus. The OE::laeA transformant produced more SMs, including those not detected under uninduced conditions. MFR produced using the M. pilosus OE::laeA strain contained 4 times more monacolin K, a cholesterol-lowering agent, than MFR produced using the wild-type strain. In addition, pigment production was remarkably increased, and the antioxidant activity was increased as well. The results from this study suggest that Monascus species, which are important industrial fermentative fungi in Asia, can be improved for the production of functional foods by overexpressing the laeA gene.

Keywords

References

  1. Alexander NJ, Hohn TH, McCormick SP. 1998. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl. Environ. Microbiol. 64: 221-225.
  2. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP. 2006. Genomic mining for Aspergillus natural products. Chem. Biol. 13: 31-37. https://doi.org/10.1016/j.chembiol.2005.10.008
  3. Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3: 527-535. https://doi.org/10.1128/EC.3.2.527-535.2004
  4. Bok JW, Noordermeer D, Kale SP, Keller NP. 2006. Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol. Microbiol. 61: 1636-1645. https://doi.org/10.1111/j.1365-2958.2006.05330.x
  5. Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C. 2008. Activation of fungal silent gene clusters: A new avenue to drug discovery. Prog. Drug Res. 66: 3-12.
  6. Chiang YM, Lee KH, Sanchez JF, Keller NP, Wang CC. 2009. Unlocking fungal cryptic natural products. Nat. Prod. Commun. 4: 1505-1510.
  7. Endo A. 1979. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. (Tokyo) 32: 852-854. https://doi.org/10.7164/antibiotics.32.852
  8. Hong J-H, Jeon J-L, Lee J-H, Lee I-S. 2007. Antioxidative properties of Artemisia princeps Pamp. J. Korean Soc. Food Sci. Nutr. 36: 657-662. https://doi.org/10.3746/jkfn.2007.36.6.657
  9. Hong S-Y, Oh J-H, Lee I. 2011. Simultaneous enrichment of deglycosylated ginsenosides and monacolin K in red ginseng by fermentation with Monascus pilosus. Biosci. Biotechnol. Biochem. 75: 1490-1495. https://doi.org/10.1271/bbb.110195
  10. Kim H-J, Ji GE, Lee I. 2007. Natural occuring levels of citrinin and monacolin K in Korean Monascus fermentation products. Food Sci. Biotechnol. 16: 142-145.
  11. Kosalkova K, Garcia-Estrada C, Ullan RV, Godio RP, Feltrer R, Teijeira F, et al. 2009. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91: 214-225. https://doi.org/10.1016/j.biochi.2008.09.004
  12. Kuba-Miyara M, Yasuda M. 2012. Bioorganic compounds produced by the fungus Monascus and their use in health sciences and medicine. Mini Rev. Org. Chem. 9: 11-19. https://doi.org/10.2174/157019312799080071
  13. Lee C-L, Pan T-M. 2012. Development of Monascus fermentation technology for high hypolipidemic effect. Appl. Microbiol. Biotechnol. 94: 1449-1459. https://doi.org/10.1007/s00253-012-4083-3
  14. Lee CL, Chen WP, Wang JJ, Pan TM. 2007. A simple and rapid approach for removing citrinin while retaining monacolin K in red mold rice. J. Agric. Food Chem. 55: 11101-11108. https://doi.org/10.1021/jf071640p
  15. Lee DS, Lee I. 2012. Development of monacolin K-enriched ganghwayakssuk (Artemisia princeps Pamp.) by fermentation with Monascus pilosus. J. Microbiol. Biotechnol. 22: 975-980. https://doi.org/10.4014/jmb.1201.01016
  16. Lee I, Oh JH, Shwab EK, Dagenais TR, Andes D, Keller NP. 2009. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet. Biol. 46: 782-790. https://doi.org/10.1016/j.fgb.2009.06.007
  17. Lin Y-L, Wang T-H, Lee M-H, Su N-W. 2008. Biologically active components and nutriceuticals in the Monascusfermented rice: A review. Appl. Microbiol. Biotechnol. 77: 965-973. https://doi.org/10.1007/s00253-007-1256-6
  18. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  19. Oda K, Kobayashi A, Ohashi S, Sano M. 2011. Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci. Biotechnol. Biochem. 75: 1832-1834. https://doi.org/10.1271/bbb.110235
  20. Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, et al. 2007. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 3: e50. https://doi.org/10.1371/journal.ppat.0030050
  21. Purwadaria T, Gunawan L, Gunawan AW. 2010. The production of nata colored by Monascus purpureus J1 pigments as functional food. Microbiol. Idonesia 4: 6-10. https://doi.org/10.5454/mi.4.1.2
  22. Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  23. Shimizu K, Keller NP. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157: 591-600.
  24. Su Y-C, Wang J-J, Lin T-T, Pan T-M. 2003. Production of the secondary metabolites ${\gamma}$-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.
  25. Su YC, Wang JJ, Lin TT, Pan TM. 2003. Production of the secondary metabolites ${\gamma}$-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.
  26. Suh SH, Rheem S, Mah JH, Lee W, Byun MW, Hwang HJ. 2007. Optimization of production of monacolin K from gamma-irradiated Monascus mutant by use of response surface methodology. J. Med. Food 10: 408-415. https://doi.org/10.1089/jmf.2006.097
  27. Tsukahara M, Shinzato N, Tamaki Y, Namihira T, Matsui T. 2009. Red yeast rice fermentation by selected Monascus sp. with deep-red color. Appl. Biochem. Biotechnol. 158: 476-482. https://doi.org/10.1007/s12010-009-8553-8
  28. Vidyalakshmi R, Paranthaman R, Murugesh S, Singaravadivel K. 2009. Stimulation of Monascus pigments by intervention of different nitrogen sources. Global J. Biotechnol. Biochem. 4: 25-28.
  29. von Dohren H. 2009. A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet. Biol. 46(Suppl. 1): S45-S52. https://doi.org/10.1016/j.fgb.2008.08.008
  30. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981. https://doi.org/10.1016/j.fgb.2004.08.001
  31. Zhang M-Y, Miyake T. 2009. Development and media regulate alternative splicing of a methyltransferase pre-mRNA in Monascus pilosus. J. Agric. Food Chem. 57: 4162-4167. https://doi.org/10.1021/jf9004109

Cited by

  1. Strategies for mining fungal natural products vol.41, pp.2, 2014, https://doi.org/10.1007/s10295-013-1366-3
  2. Insights into Monascus biology at the genetic level vol.98, pp.9, 2013, https://doi.org/10.1007/s00253-014-5608-8
  3. Reconstructing fungal natural product biosynthetic pathways vol.31, pp.10, 2013, https://doi.org/10.1039/c4np00084f
  4. Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology vol.169, pp.9, 2013, https://doi.org/10.1016/j.micres.2014.02.007
  5. 발효 유무에 따른 콜롬비아 커피와 루왁커피의 항산화 활성 비교연구 vol.30, pp.6, 2013, https://doi.org/10.9724/kfcs.2014.30.6.757
  6. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology vol.99, pp.15, 2013, https://doi.org/10.1007/s00253-015-6763-2
  7. Overexpression of the Global Regulator LaeA in Chaetomium globosum Leads to the Biosynthesis of Chaetoglobosin Z vol.79, pp.10, 2016, https://doi.org/10.1021/acs.jnatprod.6b00333
  8. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways vol.44, pp.4, 2013, https://doi.org/10.1007/s10295-016-1830-y
  9. NAD + -dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin vol.7, pp.1, 2013, https://doi.org/10.1186/s13568-017-0467-1
  10. Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi vol.102, pp.1, 2013, https://doi.org/10.1007/s00253-017-8590-0
  11. Stimulatory Effects of Sugarcane Molasses on Fumigaclavine C Biosynthesis by Aspergillus fumigatus CY018 via Biofilm Enhancement vol.28, pp.5, 2013, https://doi.org/10.4014/jmb.1801.01073
  12. Overexpression of Monacolin K Biosynthesis Genes in the Monascus purpureus Azaphilone Polyketide Pathway vol.67, pp.9, 2013, https://doi.org/10.1021/acs.jafc.8b05524
  13. Search for transcription factors affecting productivity of the polyketide FR901512 in filamentous fungal sp. No. 14919 and identification of Drf1, a novel negative regulator of the biosynthetic gene c vol.83, pp.6, 2013, https://doi.org/10.1080/09168451.2019.1584519
  14. Effects of glutamic acid on the production of monacolin K in four high-yield monacolin K strains in Monascus vol.103, pp.13, 2013, https://doi.org/10.1007/s00253-019-09752-9
  15. Discovery of Two New Sorbicillinoids by Overexpression of the Global Regulator LaeA in a Marine-Derived Fungus Penicillium dipodomyis YJ-11 vol.17, pp.8, 2013, https://doi.org/10.3390/md17080446
  16. Biotechnological Production of Statins: Metabolic Aspects and Genetic Approaches vol.20, pp.15, 2013, https://doi.org/10.2174/1389201020666190718165746
  17. Induction of mutation in Monascus purpureus isolated from Thai fermented food to develop low citrinin-producing strain for application in the red koji industry vol.66, pp.3, 2013, https://doi.org/10.2323/jgam.2019.04.008
  18. Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing vol.6, pp.2, 2013, https://doi.org/10.3390/jof6020068
  19. An overview on the biosynthesis and metabolic regulation of monacolin K/lovastatin vol.11, pp.7, 2020, https://doi.org/10.1039/d0fo00691b
  20. Heteroexpression of Aspergillus nidulans laeA in Marine-Derived Fungi Triggers Upregulation of Secondary Metabolite Biosynthetic Genes vol.18, pp.12, 2020, https://doi.org/10.3390/md18120652