Browse > Article
http://dx.doi.org/10.4014/jmb.1303.03026

Strain Improvement by Overexpression of the laeA Gene in Monascus pilosus for the Production of Monascus-Fermented Rice  

Lee, Sang Sub (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University)
Lee, Jin Hee (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University)
Lee, Inhyung (Department of Advanced Fermentation Fusion Science and Technology, Kookmin University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.7, 2013 , pp. 959-965 More about this Journal
Abstract
Monascus species have been used to produce fermented rice called Monascus-fermented rice (MFR). To improve a Monascus strain via activation of secondary metabolite (SM) gene clusters for use in the production of MFR, we overexpressed an ortholog of the laeA gene, which encodes a global positive regulator of secondary metabolism under the control of the strong heterologous Aspergillus nidulans alcA promoter in Monascus pilosus. The OE::laeA transformant produced more SMs, including those not detected under uninduced conditions. MFR produced using the M. pilosus OE::laeA strain contained 4 times more monacolin K, a cholesterol-lowering agent, than MFR produced using the wild-type strain. In addition, pigment production was remarkably increased, and the antioxidant activity was increased as well. The results from this study suggest that Monascus species, which are important industrial fermentative fungi in Asia, can be improved for the production of functional foods by overexpressing the laeA gene.
Keywords
Monascus pilosus; secondary metabolite; Monascus-fermented rice; laeA; monacolin K;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chiang YM, Lee KH, Sanchez JF, Keller NP, Wang CC. 2009. Unlocking fungal cryptic natural products. Nat. Prod. Commun. 4: 1505-1510.
2 Alexander NJ, Hohn TH, McCormick SP. 1998. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl. Environ. Microbiol. 64: 221-225.
3 Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP. 2006. Genomic mining for Aspergillus natural products. Chem. Biol. 13: 31-37.   DOI   ScienceOn
4 Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3: 527-535.   DOI   ScienceOn
5 Bok JW, Noordermeer D, Kale SP, Keller NP. 2006. Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol. Microbiol. 61: 1636-1645.   DOI   ScienceOn
6 Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C. 2008. Activation of fungal silent gene clusters: A new avenue to drug discovery. Prog. Drug Res. 66: 3-12.
7 Endo A. 1979. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. (Tokyo) 32: 852-854.   DOI
8 Hong J-H, Jeon J-L, Lee J-H, Lee I-S. 2007. Antioxidative properties of Artemisia princeps Pamp. J. Korean Soc. Food Sci. Nutr. 36: 657-662.   DOI   ScienceOn
9 Hong S-Y, Oh J-H, Lee I. 2011. Simultaneous enrichment of deglycosylated ginsenosides and monacolin K in red ginseng by fermentation with Monascus pilosus. Biosci. Biotechnol. Biochem. 75: 1490-1495.   DOI   ScienceOn
10 Kim H-J, Ji GE, Lee I. 2007. Natural occuring levels of citrinin and monacolin K in Korean Monascus fermentation products. Food Sci. Biotechnol. 16: 142-145.
11 Lee CL, Chen WP, Wang JJ, Pan TM. 2007. A simple and rapid approach for removing citrinin while retaining monacolin K in red mold rice. J. Agric. Food Chem. 55: 11101-11108.   DOI   ScienceOn
12 Kosalkova K, Garcia-Estrada C, Ullan RV, Godio RP, Feltrer R, Teijeira F, et al. 2009. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91: 214-225.   DOI   ScienceOn
13 Kuba-Miyara M, Yasuda M. 2012. Bioorganic compounds produced by the fungus Monascus and their use in health sciences and medicine. Mini Rev. Org. Chem. 9: 11-19.   DOI
14 Lee C-L, Pan T-M. 2012. Development of Monascus fermentation technology for high hypolipidemic effect. Appl. Microbiol. Biotechnol. 94: 1449-1459.   DOI   ScienceOn
15 Lee DS, Lee I. 2012. Development of monacolin K-enriched ganghwayakssuk (Artemisia princeps Pamp.) by fermentation with Monascus pilosus. J. Microbiol. Biotechnol. 22: 975-980.   DOI   ScienceOn
16 Lee I, Oh JH, Shwab EK, Dagenais TR, Andes D, Keller NP. 2009. HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet. Biol. 46: 782-790.   DOI   ScienceOn
17 Lin Y-L, Wang T-H, Lee M-H, Su N-W. 2008. Biologically active components and nutriceuticals in the Monascusfermented rice: A review. Appl. Microbiol. Biotechnol. 77: 965-973.   DOI   ScienceOn
18 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408.   DOI   ScienceOn
19 Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
20 Oda K, Kobayashi A, Ohashi S, Sano M. 2011. Aspergillus oryzae laeA regulates kojic acid synthesis genes. Biosci. Biotechnol. Biochem. 75: 1832-1834.   DOI   ScienceOn
21 Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, et al. 2007. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 3: e50.   DOI   ScienceOn
22 Purwadaria T, Gunawan L, Gunawan AW. 2010. The production of nata colored by Monascus purpureus J1 pigments as functional food. Microbiol. Idonesia 4: 6-10.   DOI
23 Shimizu K, Keller NP. 2001. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157: 591-600.
24 Su Y-C, Wang J-J, Lin T-T, Pan T-M. 2003. Production of the secondary metabolites ${\gamma}$-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.
25 Su YC, Wang JJ, Lin TT, Pan TM. 2003. Production of the secondary metabolites ${\gamma}$-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30: 41-46.
26 Suh SH, Rheem S, Mah JH, Lee W, Byun MW, Hwang HJ. 2007. Optimization of production of monacolin K from gamma-irradiated Monascus mutant by use of response surface methodology. J. Med. Food 10: 408-415.   DOI   ScienceOn
27 Tsukahara M, Shinzato N, Tamaki Y, Namihira T, Matsui T. 2009. Red yeast rice fermentation by selected Monascus sp. with deep-red color. Appl. Biochem. Biotechnol. 158: 476-482.   DOI   ScienceOn
28 von Dohren H. 2009. A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet. Biol. 46(Suppl. 1): S45-S52.   DOI   ScienceOn
29 Zhang M-Y, Miyake T. 2009. Development and media regulate alternative splicing of a methyltransferase pre-mRNA in Monascus pilosus. J. Agric. Food Chem. 57: 4162-4167.   DOI   ScienceOn
30 Vidyalakshmi R, Paranthaman R, Murugesh S, Singaravadivel K. 2009. Stimulation of Monascus pigments by intervention of different nitrogen sources. Global J. Biotechnol. Biochem. 4: 25-28.
31 Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C. 2004. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 41: 973-981.   DOI   ScienceOn