• 제목/요약/키워드: Heterojunction

검색결과 447건 처리시간 0.033초

Frequency-dependent C-V Characteristic-based Extraction of Interface Trap Density in Normally-off Gate-recessed AlGaN/GaN Heterojunction Field-effect Transistors

  • Choi, Sungju;Kang, Youngjin;Kim, Jonghwa;Kim, Jungmok;Choi, Sung-Jin;Kim, Dong Myong;Cha, Ho-Young;Kim, Hyungtak;Kim, Dae Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.497-503
    • /
    • 2015
  • It is essential to acquire an accurate and simple technique for extracting the interface trap density ($D_{it}$) in order to characterize the normally-off gate-recessed AlGaN/GaN hetero field-effect transistors (HFETs) because they can undergo interface trap generation induced by the etch damage in each interfacial layer provoking the degradation of device performance as well as serious instability. Here, the frequency-dependent capacitance-voltage (C-V) method (FDCM) is proposed as a simple and fast technique for extracting $D_{it}$ and demonstrated in normally-off gate-recessed AlGaN/GaN HFETs. The FDCM is found to be not only simpler than the conductance method along with the same precision, but also much useful for a simple C-V model for AlGaN/GaN HFETs because it identifies frequency-independent and bias-dependent capacitance components.

수처리용 Ti/IrO2/SnO2-Sb-Ni 전극의 전기화학적 특성평가 (Electrochemical Properties of Ti/IrO2/SnO2-Sb-Ni Electrode for Water Treatment)

  • 양소영
    • 한국환경과학회지
    • /
    • 제29권10호
    • /
    • pp.943-949
    • /
    • 2020
  • In this work, we prepared a heterojunction anode with a surface layer of SnO2-Sb-Ni (SSN) on a Ti/IrO2 electrode by thermal decomposition to improve the electrochemical activity of the Ti/IrO2 electrode. The Ti/IrO2-SSN electrode showed significantly improved electrochemical activity compared with Ti/IrO2. For the 0.1 M NaCl and 0.1 M Na2SO4 electrolytes, the onset potential of the Ti/IrO2-SSN electrode shifted in the positive direction by 0.1 VSCE and 0.4 VSCE, respectively. In 2.0-2.5 V voltages, the concentration in Ti/IrO2-SSN was 2.59-214.6 mg/L Cl2, and Ti/IrO2 was 0.55-49.21 mg/L Cl2. Moreover, the generation of the reactive chlorine species and degradation of Eosin-Y increased by 3.79-7.60 times and 1.06-2.15 times compared with that of Ti/IrO2. Among these voltages, the generation of the reactive chlorine species and degradation of Eosin-Y were the most improved at 2.25 V. Accordingly, in the Ti/IrO2-SSN electrode, it can be assumed that the competitive reaction between chlorine ion oxidation and water oxidation is minimized at an applied voltage of 2.25V.

$\delta$도핑과 SiGe을 이용한 p 채널 MESFET의 포화 전류 증가 (Enhancement of Saturation Current of a p-channel MESFET using SiGe and $\delta$-dopend Layers)

  • 이찬호;김동명
    • 전자공학회논문지D
    • /
    • 제36D권4호
    • /
    • pp.86-92
    • /
    • 1999
  • SiGe을 이용한 p형 전계 효과 트랜지스터의 전류 구동 능력 향상을 위하여 이중 δ도핑층을 이용한 MESFET을 설계하고 시뮬레이션을 통하여 전기적 특성의 개선을 확인하였다. 두 δ도핑층 사이의 도핑 농도가 낮은 분리층에 SiGe층을 위치시키면 양자 우물이 형성되어 δ도핑층에서 넘쳐 나온 정공이 Si 채널의 경우보다 더 많아져 전류 구동 능력이 크게 향상된다. δ도핑층 사이의 SiGe층의 두께는 0∼300Å, Ge 구성비는 0∼30%의 범위에서 변화시켜 SiGe 두께 200Å, Ge 구성비 30%일 때 이중 δ도핑 Si 채널 MESFET에 비해 최대 45% 이상 개선될 수 있음을 확인하였다.

  • PDF

금속/폴리머 접합강의 충격 특성에 대한 실험적 연구 (Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets)

  • 공경일;권오범;박형욱
    • 대한기계학회논문집A
    • /
    • 제41권2호
    • /
    • pp.137-142
    • /
    • 2017
  • 최근 자동차 산업에서 경량화이면서 외부 충격에 민감한 시트 프레임은 안전성을 고려하여 꾸준히 연구개발되고 있다. 특히 본 연구에서는 고장력 강판과 폴리머의 이종 소재를 이용한 시트 프레임의 충격 특성에 대해 살펴보았다. 또한, 충격시 변위는 소재에 대해 굽힘 현상을 고려한 등가 굽힘강성식을 도입하여 살펴보았다. 층간 wire-web 구조물의 다양한 형상의 공학 디자인을 통해 충격시 변화가 적은 디자인을 설계하였으며, 육각형의 층간 wire-web 구조물이 외부 충격대비 안전계수가 높음으로 인해 흡수능력이 향상될 것으로 기대하고 있다. 이러한 연구 결과를 토대로 층간 wire-web 구조물의 설계를 통해 레진과의 함침을 높이고 이종 소재로써의 충격민감도에 유리한 제품을 개발할 수 있을 것으로 사료된다.

10Gbit/s 광수신기용 AlGaAs/GaAs HBT IC 칩 셋 ((AlGaAs/GaAs HBT IC Chipset for 10Gbit/s Optical Receiver))

  • 송재호;유태환;박창수;곽봉신
    • 전자공학회논문지C
    • /
    • 제36C권4호
    • /
    • pp.45-53
    • /
    • 1999
  • 10Gbit/s 광수신기에 사용되는 전치증폭기, 리미팅증폭기, 그리고 판별회로 IC 등을 AlGaAs/GaAs HBT 기술을 이용하여 설계 제작하였다. 사용한 HBT는 차단주파수 55GHz, 최대 공진 주파수 45GHz 의 특성을 지닌다. 제작된 전치증폭기 와 PIN 광검출기를 이용해 광수신기 front-end를 구성하였는데, 측정된 이득은 46dBΩ, 3dB 대역폭은 12.3GHz 의 특성을 보였다. 리미팅증폭기는 소신호 이득 27dB, 3dB 대역폭 10.6GHz 특성을 보였으며, 입력 신호 전압 20mVp-p 이상에서 리미팅 동작이 이루어져 900mVp-p 신호를 출력하였다. 판별회로는 10Gbit/s에서 위상마진 300°, 입력 전압 수신감도 47mVp-p의 특성을 보였다.

  • PDF

Buffer and Anode Combined Ta Doped In2O2 Electrodes Prepared by Co-sputtering for PEDOT:PSS-free Organic Solar Cells

  • Lee, Hye-Min;Noh, Yong-Jin;Na, Seok-In;Park, Hyun-Woo;Chung, Kwun-Bum;Kima, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.168.1-168.1
    • /
    • 2014
  • We developed poly (3,4-ethylene dioxylene thiophene):poly (styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs) using buffer and anode combined Ta doped $In_2O_3$ (ITaO) electrodes. To optimize the ITaO electrodes, we investigated the effect of $Ta_2O_5$ doping power on the electrical, optical, and structural properties of the co-sputtered ITaO films. The optimized ITaO film doped with 20 W $Ta_2O_5$ radio frequency power showed sheet resistance of 17.11 Ohm/square, a transmittance of 93.45%, and a work function of 4.9 eV, all of which are comparable to the value of conventional ITO electrodes. The conventional bulk heterojunction OSC with ITaO anode showed a power conversion efficiency (PCE) of 3.348% similar to the OSCs (3.541%) with an ITO anode. In addition, OSCs fabricated on an ITaO electrode successfully operated without an acidic PEDOT:PSS buffer layer and showed a PCE of 2.634%, which was much higher than the comparable no buffer OSC with an ITO anode. Therefore, co-sputtered ITaO electrodes simultaneously acting as a buffer and an anode layer can be considered promising transparent electrodes for cost-efficient and reliable OSCs because they can eliminate the use of an acidic PEDOT:PSS buffer layer.

  • PDF

SiGe HBT 제작을 위한 실리콘 게르마늄 단결정 박막의 RBS 분석 (RBS Analysis on the Si0.9Ge0.1 Epitaxial Layer for the fabrication of SiGe HBT)

  • 한태현;안호명;서광열
    • 한국전기전자재료학회논문지
    • /
    • 제17권9호
    • /
    • pp.916-923
    • /
    • 2004
  • In this paper, the strained Si$_{0.9}$Ge$_{0.1}$ epitaxial layers grown by a reduced pressure chemical vapor deposition (RPCVD) on Si (100) were characterized by Rutherford backscattering spectrometery (RBS) for the fabrication of an SiGe heterojunction bipolar transistor(HBT). RBS spectra of the ${Si}_0.9{Ge}_0.1$epitaxial layers grown on the Si substrates which were implanted with the phosphorus (P) ion and annealed at a temperature between $850^{\circ}C$ - $1000^{\circ}C$ for 30min were analyzed to investigate the post thermal annealing effect on the grown${Si}_0.9{Ge}_0.1$epitaxial layer quality. Although a damage of the substrates by P ion-implantation might be cause of the increase of RBS yield ratios, but any defects such as dislocation or stacking fault in the grown ${Si}_0.9{Ge}_0.1$ epitaxial layer were not found in transmission electron microscope (TEM) photographs. The post high temperature rapid thermal annealing (RTA) effects on the crystalline quality of the ${Si}_0.9{Ge}_0.1$ epitaxial layers were also analyzed by RBS. The changes in the RBS yield ratios were negligible for RTA a temperature between $900^{\circ}C$ - $1000^{\circ}C$for 20 sec, or $950^{\circ}C$for 20 sec - 60 sec. A SiGe HBT array shows a good Gummel characteristics with post RTA at $950^{\circ}C$ for 20 sec.sec.sec.

Enhanced Performance Characteristics of Polymer Photovoltaics by Adding an Additive-incorporated Active Layer

  • 이혜현;황종원;조영란;강용수;박성희;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.316-316
    • /
    • 2010
  • Thin films spin-coated from solvent solutions are characterized by solution parameters and spin-coating process. In this study, performance characteristics of polymer solar cells were investigated with changing solution parameters such as solvent and additives. The phase-separation between polymer and fullerene is needed to make the percolation pathway for better transportation of hole and electron in polymer solar cells. For this reason, cooperative effects of solvent mixtures adding additives with distinct solubility have been studied recently. In this study, chlorobezene, 1, 2-dichlorbenzene, and chloroform were used as solvent. 1, 8-diiodoctaned and 1, 8-octanedithiol were used as additives and were added into poly(3-hexylthiophene-2, 5-diyl)/[6, 6]-phenyl C61 butyric acid methyl ester (P3HT/PCBM) blends. Pre-patterned ITO glass was cleaned using ultrasonication in mixed solvent with ethyl alcohol, isopropyl alcohol and acetone. PEDOT:PSS was spin-coated on to the ITO substrate at 3000rpm and was baked at $120^{\circ}C$ for 10min on the hotplate. The prepared solution was spin-coated at 1000rpm and the spin-coated thin film was dried in the Petri dishes. Al electrode was deposited on the thin film by thermal evaporation. The devices were annealed at $120^{\circ}C$ for 30min. By adding 2.5 volume percent of additives into the chlorobenzene from that bulk heterojunction films consisting of P3HT/PCBM, the power efficiency (AM 1.5G conditions) was increased from 2.16% to 2.69% and 3.12% respectively. We have investigated the effect of additives in P3HT/PCBM blends and the film characteristics and the film characteristics including J-V characteristics, absorption, photoluminescence, X-ray diffraction, and atomic force microscopy to mainly depict the morphology control by doping additives.

  • PDF

Performance Characteristics of Polymer Photovoltaics using Dimethyl Sulphoxide incorporated PEDOT:PSS Buffer Layer

  • 박성희;이혜현;조영란;황종원;강용수;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.238-239
    • /
    • 2010
  • Dimethyl sulphoxide (DMSO) is one of the widely-used secondary dopants in order to enhance the conductivity of poly(3, 4-ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) film. In this work, we investigated the effect of DMSO doping in to PEDOT:PSS on the electrical performance of the bulk heterojunction photovoltaics consisting of poly(3-hexylthiophene-2, 5-diyl) and phenyl-C61-butyric acid methyl ester. Correlation between the power conversion efficiency and the mechanism of improving conductivity, surface morphology, and contact properties was examined. The PEDOT:PSS films, which contain different concentration of DMSO, have been prepared and annealed at different annealing temperatures. The mixture of DMSO and PEDOT:PSS was prepared with a ratio of 1%, 5%, 15%, 25%, 35%, 45%, 55% by volume of DMSO, respectively. The DMSO-contained PEDOT:PSS solutions were stirred for 1hr at $40^{\circ}C$, then spin-coated on the ultra-sonicated glass. The spin-coated films were baked for 10min at $65^{\circ}C$, $85^{\circ}C$, and $120^{\circ}C$ in air. In order to investigate the electrical performance, P3HT:PCBM blended film was deposited with thickness of 150nm on DMSO-doped PEDOT:PSS layer. After depositing 100nm of Al, the device was post-annealed for 30min at $120^{\circ}C$ in vacuum. The fabricated cells, in this study, have been characterized by using several techniques such as UV-Visible spectrum, 4-point probe, J-V characteristics, and atomic force microscopy (AFM). The power conversion efficiency (AM 1.5G conditions) was increased from 0.91% to 2.35% by tuning DMSO doping ratio and annealing temperature. It is believed that the improved power conversion efficiency of the photovoltaics is attributed to the increased conductivity, leading to increasing short-circuit current in DMSO-doped PEDOT:PSS layer.

  • PDF

Study of Energy Level Alignment at the Interface of P3HT and PCBM Bilayer Deposited by Electrospray Vacuum Deposition

  • Kim, Ji-Hoon;Hong, Jong-Am;Seo, Jae-Won;Kwon, Dae-Gyoen;Park, Yong-Sup
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2012
  • We investigated the interface of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) by using photoelectron spectroscopy (PES). These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. Study of the BHJ interfaces is difficult because the organic films are typically prepared by spin coating in ambient conditions. This is incompatible with the interface electronic structure probes such as PES, which requires ultrahigh vacuum conditions. Study of interface requires gradual deposition of thin films that is also incompatible with the spin coating process. In this work, we used electrospray vacuum deposition (EVD) technique to deposit P3HT and PCBM in high vacuum conditions. EVD allows us to form polymer thin films onto ITO substrate in a step-wise manner directly from solutions and to use PES without exposing the sample to the ambient condition. Although the morphology of the EVD deposited P3HT films observed by optical and atomic force microscopes is quite different from that of the spin coated ones, the valence region spectra were similar. PCBM was deposited on the P3HT film in a similar manner and the energy level alignment between these two materials was studied. We discuss the relation between Voc of P3HT:PCBM solar cell and HOMO-LUMO energy offset obtained in this study.

  • PDF