Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.10.943

Electrochemical Properties of Ti/IrO2/SnO2-Sb-Ni Electrode for Water Treatment  

Yang, So Young (Advanced institute of water industry, Kyungpook National University)
Publication Information
Journal of Environmental Science International / v.29, no.10, 2020 , pp. 943-949 More about this Journal
Abstract
In this work, we prepared a heterojunction anode with a surface layer of SnO2-Sb-Ni (SSN) on a Ti/IrO2 electrode by thermal decomposition to improve the electrochemical activity of the Ti/IrO2 electrode. The Ti/IrO2-SSN electrode showed significantly improved electrochemical activity compared with Ti/IrO2. For the 0.1 M NaCl and 0.1 M Na2SO4 electrolytes, the onset potential of the Ti/IrO2-SSN electrode shifted in the positive direction by 0.1 VSCE and 0.4 VSCE, respectively. In 2.0-2.5 V voltages, the concentration in Ti/IrO2-SSN was 2.59-214.6 mg/L Cl2, and Ti/IrO2 was 0.55-49.21 mg/L Cl2. Moreover, the generation of the reactive chlorine species and degradation of Eosin-Y increased by 3.79-7.60 times and 1.06-2.15 times compared with that of Ti/IrO2. Among these voltages, the generation of the reactive chlorine species and degradation of Eosin-Y were the most improved at 2.25 V. Accordingly, in the Ti/IrO2-SSN electrode, it can be assumed that the competitive reaction between chlorine ion oxidation and water oxidation is minimized at an applied voltage of 2.25V.
Keywords
$IrO_2$; $SnO_2-Sb$; Water treatment; Free chlorine; Electrocatalyst;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Bauer, R., Fallmann, H., 1997, The photo-fenton oxidation-a cheap and efficient wastewater treatment method, Res. chem. intermed., 23, 4, 341-354.   DOI
2 Chaiyont, R., Badoe, C., Ponce de Leon, C., Nava, J. L., Recio, F. J., Sires, I., Herrasti, P., Walsh, F. C., 2013, Decolorization of methyl orange dye at $IrO_2-SnO_2-Sb_2O_5$ coated titanium anodes, Chem. Eng. & Technol., 36, 1, 123-129.   DOI
3 Chaplin, B. P., 2014, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci. Process Impacts, 16, 1182-1203.   DOI
4 Chen, G., Chen, X., Yue, P. L., 2002, Electrochemical behavior of novel $Ti/IrOx-Sb_2O_5-SnO_2$ anodes, J. Phys. Chem. B, 106, 4364-4369.   DOI
5 Chen, X., Chen, G., Yue, P. L., 2001, Stable $Ti/IrOx-Sb_2O_5-SnO_2$ anode for $O_2$ evolution with low Ir content, J. Phys. Chem. B, 105, 20, 4623-4628.   DOI
6 Chun, D., Lim, C., Lee, H., Yoon, W., Lee, T., Kim, D. K., 2018, Electrochemical treatment of urine by using $Ti/IrO_2/TiO_2>$ electrode, J. Water Process. Eng., 26, 1-9.   DOI
7 Cho, K., Hoffmann, M. R., 2015, BixTi1-xOz functionalized heterojunction anode with an enhanced reactive chlorine generation efficiency in dilute aqueous solutions, Chem. Mater., 27, 2224-2233.   DOI
8 Comninellis, C., 1994, Electrocatalysis in the electro-chemical conversion/combustion of organic pollutants for waste water treatment, Electrochimica Acta, 39, 1857-1862.   DOI
9 Comninellis, Ch., Vercesi, G. P., 1991, Characterization of DSA(R)-type oxygen evolving electrodes: Choice of a coating, J. Appl. Electrochem., 21, 335-345.   DOI
10 Feng, Y., Yang, L., Liu, J., Logan, B. E., 2016, Electrochemical technologies for wastewater treatment and resource reclamation, Environ. Sci. Water Res. Technol., 2, 800-831.   DOI
11 Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., Agarwal, S., 2012, Chemical treatment technologies for waste-water recycling-an overview, RSC Adv., 2, 6380-6388.   DOI
12 He, D., Mho, S. I., 2004, Electrocatalytic reactions of phenolic compounds at ferric ion co-doped $SnO_2:Sb^{5+}$ electrodes, J. Electroanal. Chem., 568, 19-27.   DOI
13 Hong, S., Cho, K., 2018, A Study on reactive chlorine species generation enhanced by heterojunction structures on surface of $IrO_2$-based anodes for water treatment, J. Korean Soc. Water Wastewater, 32, 4, 349-355.   DOI
14 Panizza, M., Cerisola, G., 2009, Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 109, 6541-6569.   DOI
15 Kim, D. S., Park, Y. S., 2009, A Study on the preparation of the Dimensionally Stable Anode (DSA) with high generation rate of oxidants(I), J. Environ. Sci., 18, 1, 49-60.
16 Kim, J., Oh, S., Kang, W., Yoo, H. Y., Lee, J., Kim, D., 2019, Superior anodic oxidation in tailored Sb-doped $SnO_2/RuO_2$ composite nanofibers for electrochemical water treatment, J. Catal., 374, 118-126.   DOI
17 Lee, Y., Park, Y., 2020, Ultrathin multilayer $Sb-SnO_2/IrTaOx/TiO_2 $ nanotube arrays as anodes for the selective oxidation of chloride ions, J. Alloys and Compounds, 840, 155622-155629.   DOI
18 Rajkumar, D., Kim, J. K., Palanivelu, K., 2005, Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment, Chem. Eng. Technol., 28, 98-105.   DOI
19 Ryu, S. Y., Hoffmann, M. R., 2016, Mixed-metal semiconductor anodes for electrochemical water splitting and reactive chlorine species generation: implications for electrochemical wastewater treatment, Catalysts, 6, 59-74.   DOI
20 Terezo, A. J., Pereira, E. C., 2000, Fractional factorial design applied to investigation properties of $Ti/IrO_2-Nb_2O_5$ electrodes, Electrochim. Acta, 45, 4351-4358.   DOI
21 Wu, W., Huang, Z. H., Lim, T. T., 2014, Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water, Appl. Catal. A: Gen., 480, 58-78.   DOI
22 Yang, S. Y., Kim, D., Park, H., 2014, Shift of the reactive species in the Sb-$SnO_2$-electrocatalyzed inactivation of E. coli and degradation of phenol: effects of nickel doping and electrolytes, Environ. Sci. Technol., 48, 5, 2877-2884.   DOI
23 Yang, S. Y., Choo, Y. S., Kim, S., Lim, S. K., Lee, J., Park, H., 2012, Boosting the electrocatalytic activities of $SnO_2$ electrodes for remediation of aqueous pollutants by doping with various metals, Appl. Catal. B: Environ., 111-112, 317-325.   DOI