• Title/Summary/Keyword: Heterogeneous Wireless Network

Search Result 285, Processing Time 0.03 seconds

Fast Mobility Management Method Using Multi-Casting Tunneling in Heterogeneous Wireless Networks (이기종 무선 네트워크에서 멀티 캐스팅 터널링을 이용한 이동성 관리 방법)

  • Chun, Seung-Man;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.69-77
    • /
    • 2010
  • This paper presents a fast IP mobility management scheme in heterogeneous networks using the multiple wireless network interlaces. More specifically, in order to minimize the packet loss and handover latency due to handover, the E-HMIPv6, IETF HMIPv6 has been extended, is presented where the multiple tunnels between E-MAP and mobile node are dynamically constructed. E-HMIPv6 is composed of the extension of IETF HMIPv6 MAP, handover procedure, and simultaneous multiple tunnels. In order to demonstrate superior to the proposed method, the NS-2 simulation has done for performance evaluation of TCP and UDP-based application comparison with the existing mobility management method.

Heterogeneous Network Gateway Architecture and Simulation for Tactical MANET (전술 에드혹 환경에서 이종망 게이트웨이 구조 및 시뮬레이션 연구)

  • Roh, Bong Soo;Han, Myoung Hun;Kwon, Dae Hoon;Ham, Jae Hyun;Yun, Seon Hui;Ha, Jae Kyoung;Kim, Ki Il
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • The tactical mobile ad-hoc network(MANET) consists of distributed autonomous networks between individual ground nodes, which is effective in terms of network survivability and flexibility. However, due to constraints such as limited power, terrain, and mobility, frequent link disconnection and shadow area may occur in communication. On the other hand, the satellite network has the advantage of providing a wide-area wireless link overcoming terrain and mobility, but has limited bandwidth and high-latency characteristic. In the future battlefield, an integrated network architecture for interworking multi-layer networks through a heterogeneous network gateway (HNG) is required to overcome the limitations of the existing individual networks and increase reliability and efficiency of communication. In this paper, we propose a new HNG architecture and detailed algorithm that integrates satellite network and the tactical MANET and enables reliable data transfer based on flow characteristics of traffic. The simulations validated the proposed architecture using Riverbed Modeler, a network-level simulator.

An Efficient Rate Control Protocol for Wireless Sensor Network Handling Diverse Traffic

  • Monowar, Muhammad Mostafa;Rahman, Md. Obaidur;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10a
    • /
    • pp.130-131
    • /
    • 2007
  • Wireless Sensor Network typically incorporates diverse applications within the same network. A sensor node may have multiple sensors i.e. light, temperature, seismic etc with different transmission characteristics. Each application has different characteristics and requirements in terms of transmission rates, bandwidth, packet loss and delay demands may be initiated towards the sink. In this paper we propose Heterogeneous Traffic Oriented Rate Control Protocol (HTRCP) which ensures efficient rate control for diverse applications according to the priority specified by the sink. Moreover. HTRCP ensures the node priority based hop by hop dynamic rate adjustment for high link utilization.

  • PDF

Handoff Management for Mobile Devices in Hybrid Wireless Data Networks

  • Inayat Riaz;Aibara Reiji;Nishimura Kouji
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.76-86
    • /
    • 2005
  • Today's wireless access networks consist of several tiers that overlap each other. Provisioning of real time undisrupted communication to mobile users, anywhere and anytime through these heterogeneous overlay networks, is a challenging task. We extend the end-to-end approach for the handoff management in hybrid wireless data network by designing a fully mobile-controlled handoff for mobile devices equipped with dual mode interfaces. By handoff, we mean switching the communication between interfaces connected to different subnets. This mobile-controlled handoff scheme reduces the service disruption time during both horizontal and vertical handoffs and does not require any modification in the access networks. We exploit the IP diversity created by the dual interfaces in the overlapping area by simultaneously connecting to different subnets and networks. Power saving is achieved by activating both interfaces only during the handoff period. The performance evaluation of the handoff is carried out by a simple mathematical analysis. The analysis shows that with proper network engineering, exploiting the speed of mobile node and overlapping area between subnets can reduce service disruption and power consumption during handoff significantly. We believe that with more powerful network interfaces our proposal of dual interfaces can be realized.

A Cooperative Energy-efficient Scheduling Scheme for Heterogeneous Wireless Networks (이기종 무선망에서 에너지 효율 개선을 위한 망간 협력 기반 스케쥴링 기법)

  • Kim, Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.3-8
    • /
    • 2016
  • Wireless networks have evolved to the appearance of heterogeneous wireless networks(HetNet), where various networks provide data services with various data rates and coverage. One of technical issues for HetNet is efficient utilization of radio resources for system performance enhancement. For the next generation wireless networks, energy saving has become one of key performance indices, so energy-efficient resource management schemes for HetNet need to be developed. This paper addresses an energy-efficient scheduling for HetNet in order to improve the energy efficiency while maintaining similar system throughput as existing scheme, for which an energy-efficient scheduling that energy efficiency factor is included. Simulation results show that the proposed scheme achieves the reduction of energy consumption while admitting limited ragne of throughput degradation in comparison with the conventional proportional fair scheduling.

A Window-Based Congestion Control Algorithm for Wireless TCP in Heterogeneous Networks

  • Byun, Hee-Jung;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.474-479
    • /
    • 2004
  • This paper describes a feedback-based congestion control algorithm to improve TCP performance over wireless network. In this paper, we adjust the packet marking probability at the router for Max-Min fair sharing of the bandwidth and full utilization of the link. Using the successive ECN (Explicit Congestion Notification), the proposed algorithm regulates the window size to avoid the congestion and sees the packet loss only due to the wireless link error. Based on the asymptotic analysis, it is shown that the proposed algorithm guarantees the QoS of the wireless TCP. The effectiveness of the proposed algorithm is demonstrated by simulations.

  • PDF

A Study of Mobility support Analysis on Heterogeneous Wireless Network (이종 무선망간 이동성 제공 분석에 관한 연구)

  • Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.577-580
    • /
    • 2012
  • Communication environment has rapidly evolved into All-IP based core network, which is centered on a variety of access network, and develops into ubiquitous environment for each user due to the development of multiple interface terminals and the spread of contents usage. Especially, mobile streaming technologies and integrated authentication technologies are needed for mobile users to provide seamless mobility. The technology for seamless mobility services is an important issue. In this paper, the IEEE 802.21 MIH information server is based on the network offering handover technology between heterogeneous network.

  • PDF

Seamless and Secure Service Framework using Multiple Network Interlaces Terminal in Heterogeneous Environment (이종 네트워크 환경에서 다중 인터페이스 단말을 활용한 끊김 없이 안전한 서비스 프레임워크)

  • Yoon, Sung-Hun;Lee, Soon-Seok;Kim, Sang-Ha
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.53-65
    • /
    • 2011
  • As the Information and Communication Technologies continue to advance, some sensitive services (e.g. e-commerce, on-line financial service, and etc.) have spread rapidly. Accordingly, ensuring the safety of the sensitive service itself using personal Information as well as the protection of personal Information Is becoming very important. In addition, with the popularization of smart phone and the universalized use of wireless Internet, many services that have been provided on the basis of the conventional wired network are increasingly propagating to wired and wireless converged network environment. These changes in the network environment requires new paradigm for the pursuit of safe and stable communication. In this paper, we propose seamless and secure service framework that can facilitate a sustainable secure connection between the user terminal and the sensitive service system by using both the personal and network Information. The proposed service framework is capable of isolating the source of authorized use by a third party of the personal Information as far as the user terminal is not lost, although some personal Information is disclosed. Besides, it can provide a seamless and safe service environment even if the access network is changed by relocation of terminals in the heterogeneous mobile network environment.

Mobile Sink Path Planning in Heterogeneous IoT Sensors: a Salp Swarm Algorithm Scheme

  • Hamidouche, Ranida;Aliouat, Zibouda;Ari, Ado Adamou Abba;Gueroui, Abdelhak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2225-2239
    • /
    • 2021
  • To assist in data collection, the use of a mobile sink has been widely suggested in the literature. Due to the limited sensor node's storage capacity, this manner to collect data induces huge latencies and drop packets. Their buffers will be overloaded and lead to network congestion. Recently, a new bio-inspired optimization algorithm appeared. Researchers were inspired by the swarming mechanism of salps and thus creating what is called the Salp Swarm Algorithm (SSA). This paper improves the sink mobility to enhance energy dissipation, throughput, and convergence speed by imitating the salp's movement. The new approach, named the Mobile Sink based on Modified Salp Swarm Algorithm (MSSA), is approved in a heterogeneous Wireless Sensor Network (WSN) data collection. The performance of the MSSA protocol is assessed using several iterations. Results demonstrate that our proposal surpass other literature algorithms in terms of lifespan and throughput.

A Study on Cluster Head Selection and a Cluster Formation Plan to Prolong the Lifetime of a Wireless Sensor Network

  • Ko, Sung-Won;Cho, Jeong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.62-70
    • /
    • 2015
  • The energy of a sensor in a Wireless Sensor Network (WSN) puts a limit on the lifetime of the network. To prolong the lifetime, a clustering plan is used. Clustering technology gets its energy efficiency through reducing the number of communication occurrences between the sensors and the base station (BS). In the distributed clustering protocol, LEACH-like (Low Energy Adaptive Clustering Hierarchy - like), the number of sensor's cluster head (CH) roles is different depending on the sensor's residual energy, which prolongs the time at which half of nodes die (HNA) and network lifetime. The position of the CH in each cluster tends to be at the center of the side close to BS, which forces cluster members to consume more energy to send data to the CH. In this paper, a protocol, pseudo-LEACH, is proposed, in which a cluster with a CH placed at the center of the cluster is formed. The scheme used allows the network to consume less energy. As a result, the timing of the HNA is extended and the stable network period increases at about 10% as shown by the simulation using MATLAB.