• Title/Summary/Keyword: Heterogeneous Catalysts

Search Result 96, Processing Time 0.033 seconds

Asymmetric Ring Opening of Terminal Epoxides Catalyzed by Chiral Co(III)-BF3 Salen Complex Immobilized on SBA-16

  • Kim, Yong-Suk;Lee, Choong-Young;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1771-1777
    • /
    • 2009
  • The homogeneous B$F_3$ containing chiral Co(III) salen complexes were anchored non-covalently on the surfaces of mesoporous SBA-16 silica containing aluminum species. The Brönsted and Lewis acidic sites are attributed to the immobilization of fluorine functionalized chiral salen complexes on the supports. The FT-IR, UV, ESCA, and NMR analyses were performed to determine the structure of synthesized chiral salen catalysts. These heterogeneous catalysts could be applied in asymmetric ring opening of terminal epoxides by water and phenol derivatives. They showed very high enantioselectivity and yield more than 98% in the catalytic synthesis of optically active products.

Polymer-Supported Crown Ethers(Ⅳ) Synthesis and Phase-transfer Catalytic Activity

  • Shim Jae Hu;Chung Kwang Bo;Masao Tomoi
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.274-279
    • /
    • 1992
  • Immobilization method of lariat azacrown ethers, containing hydroxyl group in the side arm of crown ring, on the polymer matrix and the phase-transfer catalytic activity of thus obtained immobilized lariat azacrown ethers were studied. Polystyrene resins with crown ether structures and hydroxyl groups adjacent to the macrorings were prepared by the reaction of crosslinked polystyrene resins containing epoxy groups with monoaza-15-crown-5 or monoaza-18-crown-6. Microporous crosslinked polystyrene resins containing epoxy group for the syntheses of these immobilized lariat crown catalysts were prepared by suspension polymerization of styrene, divinylbenzene (DVB 2%) and vinylbenzylglycidyl ether. The immobilized lariat catalysts with 10-20% ring substitution exhibited maximal activity for the halogen exchange reactions of 1-bromooctane with aqueous KI or NaI under triphase heterogeneous conditions. Immobilized catalyst exhibited higher activity than corresponding catalyst without the hydroxyl group and this result was suggested that the active site have a structure in which the $K^+$ ion was bound by the cooperative coordination of the crown ring donors and the hydroxyl group in the side arm.

Esterification Reaction of Soybean Oil by Heterogeneous Catalysts (불균일상 촉매를 이용한 대두유의 에스테르화 반응)

  • 신용섭
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.269-274
    • /
    • 2004
  • Using heterogeneous catalyst, esterification reaction of soybean oil (SBO) with methanol was investigated. Distributions of components in mixtures of soybean oil and methanol were measured at temperatures ranging from 40 to $65^{\circ}C$. Glycerine contents of reaction mixtures were measured for the different kinds of catalysts, such as NaOH, CaO, Ca(OH)$_2$, MgO, Mg(OH)$_2$, and Ba(OH)$_2$. Based on the measured glycerine concentrations, conversions of the reaction mixtures were calculated. The effects of dose of catalyst, cosolvent and reaction temperature on final conversion were examined. Solubility of methanol in soybean oil was substantially greater than that of soybean oil in methanol. When the esterification reaction of soybean oil was catalyzed by heterogeneous catalyst, final conversion was strongly dependent on the alkalinity of the heterogeneous catalyst, and increased with the alkalinity of the catalyst material. Hydroxides from the alkali metals were more effective than oxides, which actually had no catalytic effects. When Ca(OH)$_2$ was used for the esterification catalyst, maximum value of final conversion was measured at dose of 4%. The final conversion and reaction rate increased with reaction temperature, and showed substantial increment at reaction temperature of 5$0^{\circ}C$. When cosolvent, CHCl$_3$, was added into the reaction mixture of soybean oil which catalyzed by Ba(OH)$_2$, maximum value of final conversion was appeared at dose of 3%.

Synthesis of New Bimetallic Chiral Salen Catalyst Bearing Co(BF4)2 Salt and Its Application in Asymmetric Ring Opening of Epoxide

  • Kim, Yong-Suk;Lee, Choong-Young;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2973-2979
    • /
    • 2010
  • The newly synthesized homogeneous chiral Co(III) salen complexes were anchored non-covalently on the acidic sites of mesoporous Al-SBA-15. The Bronsted and Lewis acidic sites are attributed to the immobilization of fluorine functionalized chiral salen complexes on the supports. XRD, BET, TEM, FT-IR and ESCA (XPS) analyses were performed to characterize the property of support, and the structure of new homogeneous and heterogeneous chiral Co salen catalyst. The homogeneous and heterogeneous catalysts could be applied in asymmetric ring opening of epichlorohydrine (ECH) by water. They showed very high enantioselectivity and a good yield up to 99% in the catalytic synthesis of optically active products.

Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate

  • Mao, Cong;Zhang, Jie;Xiao, Meitian;Liu, Yongjun;Zhang, Xueqin
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1480-1485
    • /
    • 2018
  • Mesoporous carbon-silica composites supported Pt nanoparticle catalysts (Pt/MCS) were firstly applied to the heterogeneous asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate (EOPB). A series of different silica contents were investigated in the fabrication of this mesoporous material. When the volume of added tetraethyl orthosilicate (TEOS) during the preparation of composites is 8 mL, Pt/MCS-8 holds carbon and silica as the main components and possesses relatively strong acidity, mesoporous structures with micropores, appropriate Pt nanoparticle size and high dispersibility showing by XRD, XPS, TPD, $N_2$ sorption and TEM. These properties cause its good catalytic performance in the heterogeneous asymmetric hydrogenation of EOPB with the enantiomeric excess value and conversion up to 85.6% and 97.8%, respectively.

Novel Bi2S3/TiO2 Heterogeneous Catalyst: Photocatalytic Mechanism for Decolorization of Texbrite Dye and Evaluation of Oxygen Species

  • Zhu, Lei;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.56-62
    • /
    • 2016
  • A heterogeneous $Bi_2S_3/TiO_2$ composite catalyst was synthesized via a green ultrasonic-assisted method and characterized by XRD, SEM, EDX, TEM analysis. The results clearly show that the $TiO_2$ particles were homogenously coated with $Bi_2S_3$ particles, indicating that $Bi_2S_3$ particle agglomeration was effectively inhibited after the introduction of anatase $TiO_2$. The Texbrite BA-L (TBA) degradation rate constant for $Bi_2S_3/TiO_2$ composites reached $8.27{\times}10^{-3}min^{-1}$ under visible light, much higher than the corresponding value of $1.04{\times}10^{-3}min^{-1}$ for $TiO_2$. The quantities of generated hydroxyl radicals can be analyzed by DPCI degradation, which shows that under visible light irradiation, more electron-hole pairs can be generated. Finally, the possible mechanism for the generation of reactive oxygen species under visible-light irradiation was proposed as well. Our result shows the significant potential of $Bi_2S_3$-semiconductor-based $TiO_2$ hybrid materials as catalysts under visible light for the degradation of industry dye effluent substances.

Aldol Condensation over Acid-Base Bifunctional Metal-Organic Framework Catalysts (산, 염기 이원기능 금속-유기 구조체 촉매를 이용한 알돌 축합반응)

  • Chung, Young-Min
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2014
  • Various types of MOFs (metal-organic frameworks) were prepared via hydrothermal and post-grafting methods and applied as catalysts for the synthesis of jasminaldehyde, one of the representative perfume intermediates, by Aldol condensation of benzaldehyde with heptanal. Although both acid and base sites could catalyze the reaction, the catalytic performance was strongly dependent on the physical properties as well as the nature of functionalization on MOFs. While the use of sulfonated MOF catalysts led to decrease of jasminaldehyde selectivity regardless of MOFs used, the selectivity change was found to rely on the MOF types in the case of the amine-functionalization. Among the catalysts tested, MIL-101 shows the best catalytic performance, which may suggest that MIL-101 has suitable acid properties to promote the Aldol condensation and the large pore of MIL-101 is also advantageous to alleviate the diffusion problem of bulky products.

Efficient Oxidative Scission of Alkenes or Alkynes with Heterogeneous Ruthenium Zirconia Catalyst (루테늄 지르코니아 불균일 촉매를 이용한 알켄 또는 알킨의 효과적인 산화절단반응)

  • Irshad, Mobina;Choi, Bong Gill;Kang, Onyu;Hong, Seok Bok;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.659-663
    • /
    • 2016
  • The efficiency of a heterogeneous ruthenium zirconia catalyst ($Ru(OH)_x/ZrO_2$) was demonstrated to the selective oxidative transformation of alkenes or alkynes. The scissions of C-C double bonds to aldehydes and triple bonds to diketones or carboxylic acids were carried out with (diacetoxyiodo)benzene as an oxidant under dichloromethane (5 mL)/water (0.5 mL) solvent system at $30^{\circ}C$ for wide range of substrates. The $Ru(OH)_x/ZrO_2$composite showed higher catalytic activity and selectivity than other ruthenium-based homogeneous or heterogeneous catalysts for the scission reaction. The catalyst exhibited a high mechanical stability, and no leaching of the metal was observed during the reaction. These features ensured the reusability of the catalyst for several times for the oxidative cleavage of unsaturated hydrocarbons.

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.