DOI QR코드

DOI QR Code

Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate

  • Mao, Cong (College of Chemical Engineering, Huaqiao University) ;
  • Zhang, Jie (College of Chemical Engineering, Huaqiao University) ;
  • Xiao, Meitian (College of Chemical Engineering, Huaqiao University) ;
  • Liu, Yongjun (College of Chemical Engineering, Huaqiao University) ;
  • Zhang, Xueqin (College of Chemical Engineering, Huaqiao University)
  • Received : 2018.04.23
  • Accepted : 2018.09.02
  • Published : 2018.12.31

Abstract

Mesoporous carbon-silica composites supported Pt nanoparticle catalysts (Pt/MCS) were firstly applied to the heterogeneous asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate (EOPB). A series of different silica contents were investigated in the fabrication of this mesoporous material. When the volume of added tetraethyl orthosilicate (TEOS) during the preparation of composites is 8 mL, Pt/MCS-8 holds carbon and silica as the main components and possesses relatively strong acidity, mesoporous structures with micropores, appropriate Pt nanoparticle size and high dispersibility showing by XRD, XPS, TPD, $N_2$ sorption and TEM. These properties cause its good catalytic performance in the heterogeneous asymmetric hydrogenation of EOPB with the enantiomeric excess value and conversion up to 85.6% and 97.8%, respectively.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Fujian Province, Huaqiao University

References

  1. F. Meemken, A. Baiker, Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts, Chem. Rev. 117 (2017) 11522-11569. https://doi.org/10.1021/acs.chemrev.7b00272
  2. Y. Orito, S. Imai, S. Niwa, Asymmetric hydrogenation of methyl pyruvate using Pt-C catalyst modified with cinchonidine, Nippon Kagaku Kaishi 8 (1979) 1118-1120.
  3. X. Li, C. Li, Enantioselective hydrogenation of ethyl-2-oxo-4-phenylbutyrate on cinchonidine-modified $Pt/{\gamma}-Al_2O_3$ catalyst using a fixed-bed reactor, Catal. Lett. 77 (2001) 251-254. https://doi.org/10.1023/A:1013280116781
  4. H. An, X. Hu, W. Zhao, B. Zhu, S. Wang, Characterization of Pt catalysts supported by three forms of $TiO_2$ and their catalytic activities for hydrogenation, React. Kinet. Mech. Catal. 108 (2013) 117-126. https://doi.org/10.1007/s11144-012-0480-y
  5. M.U. Azmat, Y. Guo, Y. Guo, Y. Wang, G. Lu, An easy and effective approach towards heterogeneous $Pt/SiO_2$-cinchonidine catalyst system for enantioselective hydrogenation of ethyl pyruvate, J. Mol. Catal. Chem. 336 (2011) 42-50. https://doi.org/10.1016/j.molcata.2010.12.008
  6. T.J. Hall, J.E. Halder, G.J. Hutchings, R.L. Jenkins, P. Johnston, P. Mcmorn, P.B. Wells, R.P.K. Wells, Enantioselective hydrogenation of pyruvate esters in the mesoporous environment of Pt-MCM-41, Top. Catal. 11 (2000) 351-357.
  7. L.L. Lou, T. Yang, W. Yu, H. Qu, Y. Feng, H. Li, K. Yu, S. Liu, Effective and durable Pt nanocatalyst supported on three-dimensionally ordered macroporous carbon for asymmetric hydrogenation, Catal. Today 298 (2017) 197-202. https://doi.org/10.1016/j.cattod.2017.04.037
  8. S. Basu, M. Mapa, C.S. Gopinath, M. Doble, S. Bhaduri, G.K. Lahiri, MCM-41-supported platinum carbonyl cluster-derived catalysts for asymmetric and nonasymmetric hydrogenation reactions, J. Catal. 239 (2006) 154-161. https://doi.org/10.1016/j.jcat.2006.01.032
  9. L. Xing, F. Du, J.J. Liang, Y.S. Chen, Q.L. Zhou, Preparation of Pt/SWNTs for heterogeneous asymmetric hydrogenation of ethyl pyruvate, J. Mol. Catal. Chem. 276 (2007) 191-196. https://doi.org/10.1016/j.molcata.2007.07.003
  10. Z. Chen, Z. Guan, M. Li, Q. Yang, C. Li, Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation, Angew. Chem. Int. Ed. 123 (2011) 5015-5019. https://doi.org/10.1002/ange.201006870
  11. B. Li, X. Li, H. Wang, P. Wu, Pt nanoparticles entrapped in ordered mesoporous carbon for enantioselective hydrogenation, J. Mol. Catal. Chem. 345 (2011) 81-89. https://doi.org/10.1016/j.molcata.2011.05.023
  12. X. Zhang, Q. Li, M. Xiao, Y. Liu, Effective one-step reduction of Pt/alumina-carbon catalysts for asymmetric hydrogenation of $\alpha$-ketoesters, Appl. Catal. A Gen. 480 (2014) 50-57. https://doi.org/10.1016/j.apcata.2014.04.031
  13. T. Yang, L.L. Lou, W. Yu, Y. Feng, H. Li, K. Yu, S. Liu, Three-dimensionally ordered macroporous alumina-carbon nanocomposite supported Pt nanoparticles as effective and reusable catalysts for asymmetric hydrogenation, ChemCatChem 9 (2017) 458-464. https://doi.org/10.1002/cctc.201601179
  14. Y. Ji, V. Koot, A.M.J. Van Der Eerden, B.M. Weckhuysen, D.C. Koningsberger, D.E. Ramaker, A three-site Langmuir adsorption model to elucidate the temperature, pressure, and support dependence of the hydrogen coverage on supported Pt particles, J. Catal. 245 (2007) 415-427. https://doi.org/10.1016/j.jcat.2006.10.028
  15. A.Y. Stakheev, Y. Zhang, A.V. Ivanov, G.N. Baeva, A.D.E. Ramaker, D.C. Koningsberger, Separation of geometric and electronic effects of the support on the CO and $H_2$ chemisorption Properties of supported Pt particles: The effect of ionicity in modified alumina supports, J. Phys. Chem. C 111 (2007) 3938-3948. https://doi.org/10.1021/jp0651182
  16. B.L. Mojet, J.T. Miller, D.E. Ramaker, D.C. Koningsberger, A new model describing the metal-support interaction in noble metal catalysts, J. Catal. 186 (1999) 373-386. https://doi.org/10.1006/jcat.1999.2568
  17. M.K. Oudenhuijzen, J.A. Van Bokhoven, D.C. Koningsberger, Support-induced compensation effects in H/D exchange of cyclopentane, J. Catal. 219 (2003) 134-145. https://doi.org/10.1016/S0021-9517(03)00214-8
  18. F. Hoxha, B. Schimmoeller, Z. Cakl, A. Urakawa, T. Mallat, S.E. Pratsinis, A. Baiker, Influence of support acid-base properties on the platinum-catalyzed enantioselective hydrogenation of activated ketones, J. Catal. 271 (2010) 115-124. https://doi.org/10.1016/j.jcat.2010.02.012
  19. F. Hoxha, E. Schmidt, T. Mallat, B. Schimmoeller, S.E. Pratsinis, A. Baiker, Hydrogenation of acetophenone derivatives: tuning the enantioselectivity via the metal-support interaction, J. Catal. 278 (2011) 94-101. https://doi.org/10.1016/j.jcat.2010.11.025
  20. M. Yan, G. Dong, F. Zhang, Y. Shi, H. Yang, L. Zheng, C. Yu, T. Bo, D. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed. 44 (2005) 7053-7059. https://doi.org/10.1002/anie.200501561
  21. C.H. Campos, C.C. Torres, A. Leyton, J. Belmar, C. Mella, P. Osorio-Vargas, D. Ruiz, J.L.G. Fierro, P. Reyes, A new non-cinchona chiral modifier immobilized on $Pt/SiO_2$ catalysts for enantioselective heterogeneous hydrogenation, Appl. Catal. A Gen. 498 (2015) 76-87. https://doi.org/10.1016/j.apcata.2015.01.048
  22. H. Hamdan, M.N.M. Muhid, S. Endud, E. Listiorini, Z. Ramli, $^{29}Si$ MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites, J. Non-Cryst. Solids 211 (1997) 126-131. https://doi.org/10.1016/S0022-3093(96)00611-4
  23. X. Song, Y. Ding, W. Chen, W. Dong, Y. Pei, J. Zang, L. Yan, Y. Lu, Bimetal modified ordered mesoporous carbon as a support of Rh catalyst for ethanol synthesis from syngas, Catal. Commun. 19 (2012) 100-104. https://doi.org/10.1016/j.catcom.2011.12.015
  24. S.M. Glasauer, Inhibition of sintering by Si during the conversion of Si-rich ferrihydrite to hematite, Clay Clay Miner. 48 (2013) 51-56.
  25. E. Paparazzo, M. Fanfoni, E. Severini, S. Priori, Evidence of Si-OH species at the surface of aged silica, J. Vac. Sci. Technol. 10 (1992) 2892-2896. https://doi.org/10.1116/1.577726
  26. E. Miloskovska, C. Friedrichs, D. Hristova-Bogaerds, O. Persenair, M. Van Duin, M.R. Hansen, G. De With, Chemical mapping of silica prepared via sol-gel reaction in rubber nanocomposites, Macromolecules 48 (2015) 1093-1103. https://doi.org/10.1021/ma5020929
  27. C. Tang, J. Zhu, Q. Zhou, J. Wei, R. Zhu, H. Heit, Surface heterogeneity of $SiO_2$ polymorphs: an XPS investigation of alpha-quartz and alpha-cristobalite, J. Phys. Chem. C 118 (2014) 26249-26257. https://doi.org/10.1021/jp509338x
  28. J. Gao, J. Guo, D. Liang, Z. Hou, J. Fei, X. Zheng, Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined $CeO_2-ZrO_2/SiO_2$ supported Ni catalysts, Int. J. Hydrogen Energy 33 (2008) 5493-5500. https://doi.org/10.1016/j.ijhydene.2008.07.040
  29. S.L. Chen, P. Dong, A. Guanghua Yang, J.J. Yang, Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate, Ind. Eng. Chem. Res. 35 (1996) 4487-4493. https://doi.org/10.1021/ie9602217
  30. T. Hiemstra, W.H. Van Riemsdijk, G.H. Bolt, Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach : I. Model description and evaluation of intrinsic reaction constants, J. Colloid Interface Sci. 133 (1989) 105-117. https://doi.org/10.1016/0021-9797(89)90285-3
  31. R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, D. Zhao, Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas, J. Am. Chem. Soc. 128 (2006) 11652-11662. https://doi.org/10.1021/ja0633518
  32. H. Tang, S.P. Jiang, Self-assembled Pt/mesoporous silica-carbon electrocatalysts for elevated-temperature polymer electrolyte membrane fuel cells, J. Phys. Chem. C 112 (2008) 19748-19755. https://doi.org/10.1021/jp8066662
  33. R. Zhong, L. Peng, F. De Clippel, C. Gommes, B. Goderis, X. Ke, G. Van Tendeloo, P.A. Jacobs, B.F. Sels, An eco-friendly soft template synthesis of mesostructured silica-carbon nanocomposites for acid catalysis, ChemCatChem 7 (2015) 3047-3058. https://doi.org/10.1002/cctc.201500728
  34. C.J. Brinker, Hydrolysis and condensation of silicates: effects on structure, J. Non-Cryst. Solids 100 (1988) 31-50. https://doi.org/10.1016/0022-3093(88)90005-1
  35. N.B. Mckeown, S. Makhseed, P.M. Budd, Phthalocyanine-based nanoporous network polymers, Chem. Commun. 23 (2002) 2780-2781.
  36. Z. Sun, B. Sun, M. Qiao, J. Wei, Q. Yue, C. Wang, Y. Deng, K. Serge, D. Zhao, General chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for fischerâtropsch synthesis, J. Am. Chem. Soc. 134 (2012) 17653-17660. https://doi.org/10.1021/ja306913x
  37. J.T. Wehrli, A. Baiker, D.M. Monti, H.U. Blaser, Enantioselective hydrogenation of $\alpha$-ketoesters: preparation and catalytic behavior of different alumina-supported platinum catalysts modified with cinchonidine, J. Mol. Catal. 61 (1990) 207-226. https://doi.org/10.1016/0304-5102(90)85156-C
  38. D.Y. Murzin, E. Toukoniitty, Nanocatalysis in asymmetric hydrogenation, React. Kinet. Catal. Lett. 90 (2007) 19-25. https://doi.org/10.1007/s11144-007-5004-9
  39. B. Torok, K. Balazsik, M. Torok, G. Szollosi, M. Bartok, Asymmetric sonochemical reactions enantioselective hydrogenation of $\alpha$-ketoesters over platinum catalysts, Ultrason. Sonochem. 7 (2000) 151-155. https://doi.org/10.1016/S1350-4177(00)00035-3
  40. E. Schmidt, A. Vargas, T. Mallat, A. Baiker, Shape-selective enantioselective hydrogenation on Pt nanoparticles, J. Am. Chem. Soc. 131 (2009) 12358-12367. https://doi.org/10.1021/ja9043328
  41. Q. Li, X. Zhang, M. Xiao, Y. Liu, Alumina incorporated with mesoporous carbon as a novel support of Pt catalyst for asymmetric hydrogenation, Catal. Commun. 42 (2013) 68-72. https://doi.org/10.1016/j.catcom.2013.07.044
  42. M. Bartok, K. Balazsik, G. Szollosi, T. Bartok, Electrospray ionization-mass spectrometry in the enantioselective hydrogenation of ethyl pyruvate catalyzed by dihydrocinchonidine modified $Pt/Al_2O_3$ in acetic acid, J. Catal. 205 (2002) 168-176. https://doi.org/10.1006/jcat.2001.3423
  43. T. Tri, J. Massardier, P. Gallezot, B. Imelik, Additives and support effects on Pt catalysts studied by the competitive hydrogenation of benzene and toluene, Stud. Surf. Sci. Catal. 11 (1982) 141-148.

Cited by

  1. Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing lignin-derived ordered mesoporous carbon vol.36, pp.7, 2018, https://doi.org/10.1007/s11814-019-0281-3
  2. Carbon Nanocomposites: The Potential Heterogeneous Catalysts for Organic Transformations vol.24, pp.None, 2020, https://doi.org/10.2174/1385272824999200401124820