Browse > Article
http://dx.doi.org/10.7464/ksct.2014.20.2.116

Aldol Condensation over Acid-Base Bifunctional Metal-Organic Framework Catalysts  

Chung, Young-Min (Department of Nano & Chemical Engineering)
Publication Information
Clean Technology / v.20, no.2, 2014 , pp. 116-122 More about this Journal
Abstract
Various types of MOFs (metal-organic frameworks) were prepared via hydrothermal and post-grafting methods and applied as catalysts for the synthesis of jasminaldehyde, one of the representative perfume intermediates, by Aldol condensation of benzaldehyde with heptanal. Although both acid and base sites could catalyze the reaction, the catalytic performance was strongly dependent on the physical properties as well as the nature of functionalization on MOFs. While the use of sulfonated MOF catalysts led to decrease of jasminaldehyde selectivity regardless of MOFs used, the selectivity change was found to rely on the MOF types in the case of the amine-functionalization. Among the catalysts tested, MIL-101 shows the best catalytic performance, which may suggest that MIL-101 has suitable acid properties to promote the Aldol condensation and the large pore of MIL-101 is also advantageous to alleviate the diffusion problem of bulky products.
Keywords
Metal-organic framework; Aldol condensation; Heterogeneous catalyst; Bifunctional catalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Prabhu, A. and Palanichamy, M., "Mesoporous Cubic la3d Materials for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde," Micro. Meso. Mater., 168, 126-131 (2013).   DOI   ScienceOn
2 Jiang, D., Keenan., L. L., Burrows, A. D., and Edler, K. J., "Synthesis and Post-synthetic Modification of MIL-101(Cr)-$NH_2$ via a Tandem Diazotisation Process," Chem. Commun., 48, 12053-12055 (2012).   DOI   ScienceOn
3 Chung, Y.-M., Lee, Y.-R., and Ahn, W.-S., "A New Siteisolated Acid-base Bifunctional Metal-Organic Framework for One-pot Tandem Reaction," RSC Adv., 4, 23064-23067 (2014).   DOI   ScienceOn
4 Sharma, S. K., Patel, H. A., and Jasra, R. V., "Synthesis of Jasminaldehyde using Magnesium Organo Silicate as a Solid Base Catalyst," J. Mol. Catal. A: Chem., 280, 61-67 (2008).   DOI
5 Akiyama, G., Matsuda, R., Sato, H., Takata, M., and Kitagawa, S. "Cellulose Hydrolysis by a New Porous Coordination Polymer Decorated with Sulfonic Acid Functional Groups," Adv. Mater., 23, 3294-3297 (2011).   DOI   ScienceOn
6 Vermoortele, F., Ameloot, R., Vimont, A., Serrec, C., and De Vos, D., "An Amino-modified Zr-terephthalate Metal-Organic Framework as an Acid-Bbase Catalyst for Cross-Aldol Condensation," Chem. Commun., 47, 1521-1523 (2011).   DOI   ScienceOn
7 Yadav, G. D. and Aduri, P., "Aldol Condensation of Benzaldehyde with Heptanal to Jasminaldehyde over Novel Mg-Al Mixed Oxide on Hexagonal Mesoporous Silica," J. Mol. Catal. A: Chem., 355, 142-154 (2012).   DOI
8 Zlotea, C., Phanon, D., Mazaj, M., Heurtaux, D., Guillerm, V., Serre, C., Horcajada, P., Devic, T., Magnier, E., Cuevas, F., Ferey, G., Llewellyn. P. L., and Latroche, M., "Effect of $NH_2$ and $CF_3$ Functionalization on the Hydrogen Sorption Properties of MOFs," Dalton Trans., 40, 4879-4881 (2011).   DOI   ScienceOn
9 Chung, Y.-M., Kim, H.-Y., and Ahn, W.-S., "Friedel-Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates," Catal. Lett., 144, 817-824 (2014).   DOI   ScienceOn
10 Kim, J., Lee, Y. R., and Ahn, W.-S., "Dry-gel Conversion Synthesis of Cr-MIL-101 Aided by Grinding: High Surface Area and High Yield Synthesis with Minimum Purification," Chem. Commun., 49, 7647-7649 (2013).   DOI   ScienceOn
11 Corma, A., Garcia, H., and Xamena, F. X. L., "Engineering Metal-Organic Frameworks for Heterogeneous Catalysis," Chem. Rev., 110, 4606-4655 (2010).   DOI   ScienceOn
12 Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., and Herm, Z. R., "Carbon Dioxide Capture in Metal-Organic Frameworks," Chem. Rev., 112, 724-781 (2012).   DOI   ScienceOn
13 Li, J.-R., Sculley, J., and Zhou, H.-C., "Metal-Organic Frameworks for Separations," Chem. Rev., 112, 869-932 (2012).   DOI   ScienceOn
14 Cohen, S. M., "Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks," Chem. Rev., 112, 970-1000 (2012).   DOI   ScienceOn
15 Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., and Hupp, J. T., "Metal-Organic Framework Materials as Catalysts," Chem. Soc. Rev., 38, 1450-1459 (2009).   DOI   ScienceOn
16 Alaerts L., Seguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., and De Vos, D. E., "Probing the Lewis Acidity and Catalytic Activity of the Metal-Organic Framework [Cu3(btc)2] (BTC = Benzene-1,3,5-tricarboxylate)," Chem. Eur. J., 12, 7353-7363 (2006).   DOI   ScienceOn
17 Srirambalaji, R., Hong, S., Natarajan, R., Yoon, M., Hota, R., Kim, Y., Ko, Y. H., and Kim, K., "Tandem Catalysis with a Bifunctional Site-isolated Lewis Acid-Bronsted Base Metal-Organic Framework, NH2-MIL-101(Al)," Chem. Commun., 48, 11650-11652 (2012).   DOI   ScienceOn
18 Henschel, A., Gedrich, K., Kraehnert, R., and Kaskel, S., "Catalytic Properties of MIL-101," Chem. Commun., 4192-4194 (2008).
19 Kurfirtova, L., Seo, Y.-K., Hwang, Y. K., Chang, J.-S., and Cejka, J., "High Activity of Iron Containing Metal-Organic Framework in Acylation of p-Xylene with Benzoyl Chloride," Catal. Today, 179, 85-90 (2012).   DOI   ScienceOn
20 Climent, M. J., Corma, A., Garcia, H., Guil-Lopez, R., Iborra, S., and Fornes, V., "Acid-Base Bifunctional Catalysts for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde," J. Catal., 197, 385-393 (2001).   DOI   ScienceOn