• Title/Summary/Keyword: HetNet

Search Result 47, Processing Time 0.026 seconds

A Bankruptcy Game for Optimize Caching Resource Allocation in Small Cell Networks

  • Zhang, Liying;Wang, Gang;Wang, Fuxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2319-2337
    • /
    • 2019
  • In this paper, we study the distributed cooperative caching for Internet content providers in a small cell of heterogeneous network (HetNet). A general framework based on bankruptcy game model is put forth for finding the optimal caching policy. In this framework, the small cell and different content providers are modeled as bankrupt company and players, respectively. By introducing strategic decisions into the bankruptcy game, we propose a caching value assessment algorithm based on analytic hierarchy process in the framework of bankruptcy game theory to optimize the caching strategy and increase cache hit ratio. Our analysis shows that resource utilization can be improved through cooperative sharing while considering content providers' satisfaction. When the cache value is measured by multiple factors, not just popularity, the cache hit rate for user access is also increased. Simulation results show that our approach can improve the cache hit rate while ensuring the fairness of the distribution.

Spectral Efficiency of Full-Duplex Wireless Backhaul with Hardware Impaired Massive MIMO for Heterogeneous Cellular Networks

  • Anokye, Prince;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.13-25
    • /
    • 2018
  • The paper analyzes the sum spectral efficiency (SE) for a heterogeneous cellular network (HetNet) which has the backhaul, provided with wireless full-duplex massive multiple-input multiple-out (MIMO) with hardware distortions. We derive approximate expressions to obtain the uplink/downlink sum SE of the backhaul. The analytic results have been shown to be exact when compared to Monte Carlo simulations. From the analysis, it is shown that the desired signal and the hardware distortion noise have the same order. The sum SE generally improves when the number of receive antennas increases but degrades when the hardware quality reduces. A sum SE performance ceiling is introduced by the hardware quality level.

Energy-efficient Power Allocation based on worst-case performance optimization under channel uncertainties

  • Song, Xin;Dong, Li;Huang, Xue;Qin, Lei;Han, Xiuwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4595-4610
    • /
    • 2020
  • In the practical communication environment, the accurate channel state information (CSI) is difficult to obtain, which will cause the mismatch of resource and degrade the system performance. In this paper, to account for the channel uncertainties, a robust power allocation scheme for a downlink Non-orthogonal multiple access (NOMA) heterogeneous network (HetNet) is designed to maximize energy efficiency (EE), which can ensure the quality of service (QoS) of users. We conduct the robust optimization model based on worse-case method, in which the channel gains belong to certain ellipsoid sets. To solve the non-convex non-liner optimization, we transform the optimization problem via Dinkelbach method and sequential convex programming, and the power allocation of small cell users (SCUs) is achieved by Lagrange dual approach. Finally, we analysis the convergence performance of proposed scheme. The simulation results demonstrate that the proposed algorithm can improve total EE of SCUs, and has a fast convergence performance.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.

Core Technologies and Further Development Perspectives of LTE/LTE-Advanced (LTE/LTE-Advanced 핵심기술 및 발전전망)

  • Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.8-14
    • /
    • 2012
  • In this paper the core technologies of LTE/LTE-Adv systems which may enable the accommodation of huge mobile traffic today are introduced and investigated in order to provide some insights for future boradband mobile services provisioning. One of the key requirements for realization of broadband mobile services is to improve the efficiency of frequency usage and also stable performance of the LTE networks is indispensible to future use. In this sense, key technological issues are summarized hereafter and the technological breakthroughs required for the optimized operation of the networks are briefly discussed.

Analytical Evaluation of Almost Blank Subframes for Heterogeneous Networks (이종 네트워크를 위한 Almost Blank Subframes의 성능 분석)

  • Kim, Seung-Yeon;Lee, Hyong-Woo;Ryu, Seung-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.240-246
    • /
    • 2013
  • In heterogeneous networks, the almost blank subframes (ABS) for inter-cell interference coordination (ICIC), which can be protected from the CCI due to unutilized subframes (i.e., ABS) is proposed. However, the analytical model for ABS-based systems has not been fully studied yet. In this paper, we derive a new analytical model to evaluate the performance of ABS-based systems. In an analytic model, we assume that each carrier in multicarrier systems, such as in OFDMA, is subject to large-scale fading, which is independent of other carriers. As a performance measure, we present the cumulative distribution function (CDF) for the effective SINR. We show the accuracy of the analytical model via simulation results.

A Study on the Effect of Spectrum Sharing/Overlapping in a Heterogeneous OFDM System with Nonlinear High Power Amplifiers (비선형 고전력 증폭기를 가진 이종 직교주파수분할다중화 시스템에서 스펙트럼 공유/중복 효과에 대한 연구)

  • Lee, Sung-bok;Park, Jaehyun;Park, Jae Cheol;Kang, Kyu-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1707-1714
    • /
    • 2016
  • This paper presents the effect of spectrum sharing/overlapping in a heterogeneous OFDM system with nonlinear High Power Amplifier (HPA). According to the spectrum sharing strategies, the achievable rate performances are analyzed. In the non-orthogonal spectrum sharing, we address how the portion of the overlapped or overlaid spectrum band and the nonlinear properties of HPA affect the system performance and accordingly, propose the optimized spectrum sharing strategies.

Design and Implementation of Multi-mode Mobile Device for supporting License Shared Access (면허기반 주파수 공동 사용을 위한 멀티모드 단말기 설계 및 구현)

  • Jin, Yong;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.81-87
    • /
    • 2016
  • Recently, as the heterogeneous network (HetNet) has been deployed widely to support various kinds of Radio Access Networks(RANs) with a combination of Macro, Pico, and/or Femto cells, research and standardization efforts have been very active regarding the concept of Licensed Shared Access (LSA) for supporting spectrum sharing. In order for a mobile device to efficiently support the spectrum sharing, the mobile device shall be reconfigurable, meaning that its radio application code has to be adaptively changed in accordance with the hopping of desired spectral band. Especially, Working Group 2 (WG2) of Technical Committee (TC) Reconfigurable Radio System (RRS) of European Telecommunications Standards Institute (ETSI) has been a main driving force for developing standard architecture for Multi-mode Mobile Device (MD) that can be applied to the LSA system. In this paper, we introduce the Multi-mode MD architecture for supporting LSA-based spectrum sharing. An implementation of a test-bed of Multi-mode MD is presented in order to verify the feasibility of the standard MD architecture for the purpose of LSA-based spectrum sharing through various experimental tests.

Investigation of Open-Loop Transmit Power Control Parameters for Homogeneous and Heterogeneous Small-Cell Uplinks

  • Haider, Amir;Sinha, Rashmi Sharan;Hwang, Seung-Hoon
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • In Long Term Evolution (LTE) cellular networks, the transmit power control (TPC) mechanism consists of two parts: the open loop (OL) and closed loop. Most cellular networks consider OL/TPC because of its simple implementation and low operation cost. The analysis of OL/TPC parameters is essential for efficient resource management from the cellular operator's viewpoint. In this work, the impact of the OL/TPC parameters is investigated for homogeneous small cells and heterogeneous small-cell/macrocell network environments. A mathematical model is derived to compute the transmit power at the user equipment, the received power at the eNodeB, the interference in the network, and the received signal-to-interference ratio. Using the analytical platform, the effects of the OL/TPC parameters on the system performance in LTE networks are investigated. Numerical results show that, in order to achieve the best performance, it is appropriate to choose ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in a homogenous small-cell network. Further, the selections of ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in the small cells and ${\alpha}_{macro}=0.8$ and $P_{o-macro}=-100dBm$ in the macrocells seem to be suitable for heterogeneous network deployment.

Performance Analysis and Evaluation of Deployment in Small Cell Networks

  • Zheng, Kan;Li, Yue;Zhang, Yingkai;Jiang, Zheng;Long, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.886-900
    • /
    • 2015
  • Small cells are deployed in Heterogeneous Networks (HetNet) to improve overall performance. These access points can provide high-rate mobile services at hotspots to users. In a Small Cell Network (SCN), the good deployment of small cells can guarantee the performance of users on the basis of average and cell edge spectrum efficiency. In this paper, the performance of small cell deployment is analyzed by using system-level simulations. The positions of small cells can be adjusted according to the deployment radius and angle. Moreover, different Inter-Cell Interference Coordination (ICIC) techniques are also studied, which can be implemented either in time domain or in frequency domain. The network performances are evaluated under different ICIC techniques when the locations of Small evolved Nodes (SeNBs) vary. Simulation results show that the average throughput and cell edge throughput can be greatly improved when small cells are properly deployed with the certain deployment radius and angle. Meanwhile, how to optimally configure the parameters to achieve the potential of the deployment is discussed when applying different ICIC techniques.