• 제목/요약/키워드: Hertz model

검색결과 72건 처리시간 0.024초

강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구 (Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load)

  • 신정훈;정동수;김경웅
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

다수의 각접촉 볼베어링으로 지지된 5자유도 회전계에서 볼베어링의 Waviness에 의해 발생하는 비선형진동 해석모델 (Nonlinear Vibration Model of Ball Bearing Waviness in a Rigid Rotor Supported by Multi-Row Ball Bearing Considering Five Degrees of Freedom)

  • 정성원;장건희
    • 소음진동
    • /
    • 제11권2호
    • /
    • pp.336-345
    • /
    • 2001
  • This research presents a nonlinear model to analyze the ball bearing nitration due to the waviness in a rigid rotor supported by multi-row ball bearings. The waviness of a ball and each races is modeled by the superposition of sinusoidal function, and the position vectors of inner and outer groove radius center are defined with respect to the mass center of the rotor in order to consider five degrees of freedom of a general rotor-bearing system. The waviness of a ball bearing is introduced to these position vectors to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. Numerical results of this research are validated with those of prior researchers. The proposed model can calculate the translational displacement as well as the angular displacement of the rotor supported by the multi-row ball bearings with waviness. It also characterizes the nitration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing. and the sideband frequencies resulting from the waviness interaction.

  • PDF

미시역학을 이용한 사질토의 이방적 변형 특성의 해석 (Micromechanical analysis on anisotropic deformation of granular soils)

  • 정영훈;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.129-136
    • /
    • 2004
  • Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments shows that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Modified Hertz-Mindlin model is adopted to represent the force-displacement relationship in each contact point for the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic moduli is derived in the isotropic stress condition. By comparing the analytical solutions with exact values, we confirm that the analytical solutions can be utilized to evaluate model parameters within the acceptable range of error of 10%.

  • PDF

Impact onto an Ice Floe

  • Khabakhpasheva, Tatyana;Chen, Yang;Korobkin, Alexander;Maki, Kevin
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권4호
    • /
    • pp.146-162
    • /
    • 2018
  • The unsteady problem of a rigid body impact onto a floating plate is studied. Both the plate and the water are at rest before impact. The plate motion is caused by the impact force transmitted to the plate through an elastic layer with viscous damping on the top of the plate. The hydrodynamic force is calculated by using the second-order model of plate impact by Iafrati and Korobkin (2011). The present study is concerned with the deceleration experienced by a rigid body during its collision with a floating object. The problem is studied also by a fully-nonlinear computational-fluid-dynamics method. The elastic layer is treated with a moving body-fitted grid, the impacting body with an immersed boundary method, and a discrete-element method is used for the contact-force model. The presence of the elastic layer between the impacting bod- ies may lead to multiple bouncing of them, if the bodies are relatively light, before their interaction is settled and they continue to penetrate together into the water. The present study is motivated by ship slamming in icy waters, and by the effect of ice conditions on conventional free-fall lifeboats.

풍력발전기용 볼 베어링의 단순화 볼 모델을 이용한 해석기법 연구 (A Study on a Finite Element Analysis Method Using Simplified Ball Models of Wind Turbine Ball Bearings)

  • 김승우;송정우;홍준표;강종훈
    • 풍력에너지저널
    • /
    • 제14권4호
    • /
    • pp.21-28
    • /
    • 2023
  • This study focuses on the analysis of slewing ball bearings in wind turbines. Slewing bearings have an outer diameter of several meters, and hundreds of balls are in contact with the raceway. Due to the large number of balls and raceway contact conditions, it is difficult to accurately analyze contact stresses using general analysis techniques. To analyze the contact stress of a slewing ball bearing, the sub-modeling method is applied, which is a technique that first analyzes the displacement of the entire model and then analyzes the local stress at the point of maximum displacement. In order to reduce the displacement analysis time of the entire ball bearing, the technique of replacing the ball with a nonlinear spring is adopted. The analytical agreement of the simplified model was evaluated by comparing it with a solid mesh model of the ball for three models with different spring attachment methods. It was found that for the condition where a large turnover moment is applied to the bearing, increasing the number of spring elements gives the closest results to modeling the ball with a solid mesh.

가상 절점을 이용한 적층 구조물의 페리다이나믹 층간 결합 모델링 검토 (Study on Peridynamic Interlayer Modeling for Multilayered Structures)

  • 안태식;하윤도
    • 한국전산구조공학회논문집
    • /
    • 제30권5호
    • /
    • pp.389-396
    • /
    • 2017
  • 결합 기반 페리다이나믹 모델은 취성재료의 동적파괴 해석에 많이 이용되고 있으며, 최근의 연구(Bobaru et al., 2012)를 통해 적층유리 구조물의 동적 파괴 패턴 분석에도 활용되었다. 특히 실험(Bless et al., 2010)에서 나타난 적층유리 구조물의 다양한 손상 형태(압축 영역, Floret, Hertz-type 균열 등)를 결합 기반 페리다이나믹 시뮬레이션을 이용하여 구현하였다. 그러나 실제 적층 구조물은 각 유리판 사이를 탄성이 있는 층간 재료로 결합하는 반면, 기존의 페리다이나믹 수치 시뮬레이션에서는 층간 재료 결합을 무시하고 각 유리판이 직접 결속되도록 가정하여 층간 재료 효과가 무시되었다. 본 연구에서는 페리다이나믹 층간 재료 모델링을 통해 실제 적층 구조물에 보다 근접한 페리다이나믹 수치 해석 모델을 제안한다. 일반적으로 층간 재료는 매우 얇기 때문에 층간 재료를 명시적으로 모델링할 경우 많은 해석시간과 메모리가 소모되어 비효율적이다. 따라서 본 연구에서는 명시적 모델링을 대신하여 가상 절점을 통해 층간 재료를 모델링한다. 수치 예제를 통해 제안된 층간 재료 모델링의 효율성 및 정확성을 검토한다. 또한 압축 상태의 적층 구조물 해석을 위해 단거리 상호작용력에 기반한 투과 방지 기법을 도입하고 파라미터 테스트를 통해 검증한다.

공침법을 이용한 PbTiO3-Polymer O-3 압전 Composites (Performance Improvement on Cycloconverter-fed Induction Motor Speed Control System)

  • Cho, Ok-Kyun;Shin, Hwi-Beom;Yuon, Myung-Joong
    • 대한전기학회논문지
    • /
    • 제36권5호
    • /
    • pp.352-359
    • /
    • 1987
  • The cycloconverter operating on a circulating current-free mode has many zero crossing points. If an exact zero crossing points are not detected, the three phase-unbalanced currents will flow in a motor. In this paper, the current feedback using a current reference wave is proposed to improve the problems of zero crossing detection, three phase-unbalanced voltages, currents, and torgue ripples. To prevent the saturation of the air gap flux and keep the torque constant, the constant voltage / hertz control with IR compensation is adopted. The PI-controller is designed using the linearized model of the cycloconverterinduction motor system. Alsi, Z-80A single board computer has been used to implement the proposed scheme which results in the performance improvement of cycloconterter-fed induction motor speed control system.

  • PDF

Finite element generalized tooth contact analysis of double circular arc helical gears

  • Qu, Wentao;Peng, Xiongqi;Zhao, Ning;Guo, Hui
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.439-448
    • /
    • 2012
  • This paper investigates the load sharing of double circular arc helical gears considering the influence of assembly errors. Based on a load sharing formulae, a three-dimensional finite element tooth contact analysis (TCA) is implemented with commercial software package ANSYS. The finite element grid for the double circular arc gear contact model is automatically generated by using the APDL (ANSYS Parameter Design Language) embedded in ANSYS. The realistic rotation of gears is achieved by using a coupling degree-of-freedom method. Numerical simulations are carried out to exemplify the proposed approach. The distribution of contact stress and bending stress under specific loading conditions are computed and compared with those obtained from Hertz contact theory and empirical formulae to demonstrate the efficiency of the proposed load sharing calculation formulae and TCA approach.

교량받침용 대형 Roller Shoe의 구름마찰특성에 관한 연구 (A Study on the Rolling Friction Characteristics of Large Scale Roller Shoe for Bridge Supporter)

  • 김영득;김재철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.660-663
    • /
    • 2001
  • There is a mechanical device between the superstructure and substructure of a bridge, which transmit vertical load of superstructure to the substructure and absorb horizontal displacement of super structure due to thermal, dynamic, load, etc. In order to meet two requirements at once, the structure of roller between plates is widely used, and this roller between plates is widely used, and this roller shoe system is known to have smaller horizontal movement resistance than any other type of bridge shoe. In this study, rolling friction resistance characteristics of roller-plate friction system is investigated according to roller dimension, vertical load, hardness and roughness of roller and plate. On the base of the results, the rolling friction resistance of large scale roller shoe is evaluated using model experiment.

  • PDF

Young Stellar Objects and Dense Clouds in the W51 Region

  • Kang, Mi-Ju;Bieging, John H.;Kulesa, Craig A.;Lee, Yong-Ung;Choi, Min-Ho;Peters, William L.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.72.1-72.1
    • /
    • 2010
  • We present infrared and millimeter observations of the active star-forming complex W51. A $1.25\;deg\times1.00\;deg$ region that includes the W51 complex was covered in the J = 2 - 1 transition of the $^{12}CO$ and $^{13}CO$ molecules with the University of Arizona Heinrich Hertz Submillimeter Telescope. We use a statistical equilibrium code to estimate physical properties of the molecular gas. Using Spitzer data we identify young stellar objects (YSOs) and fit model spectral energy distributions to these sources and constrain their physical properties. We compare the molecular cloud morphology with the distribution of infrared and radio continuum sources and find associations between molecular clouds and YSOs. We estimate that about 1% of the cloud mass is currently in YSOs.

  • PDF