• Title/Summary/Keyword: Hertz접촉

Search Result 63, Processing Time 0.023 seconds

The research on wear simulation between wheel and rail at inclined of Korea High Speed Railway (경사선로에서의 차륜과 레일간 상호작용에 따른 마모 현상 연구)

  • Moon Tai-Seon;Seo Bo-Pil;Choi Jeung-Hum;Han Dong-Chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.112-117
    • /
    • 2003
  • The purpose of this work is to general approach to numerically simulating wear in rolling and sliding contact area between wheel and rail interface based on the analysis of dynamics with general MBS package. A simulation scheme is developed that calculates the wear at a detailed level. The estimation of material removal follows Archard's wear equation which states that the reduction of volume is linearly proportional to the sliding distance, the normal applied load and the wear coefficient and inverse proportional to hardness. The main research application is the wheel-rail contact of Korea High Speed Railway.

  • PDF

Analysis of the Rolling Contact Fatigue for Work Roll in Finishing Mill of Hot Strip Rolling (열간 연속판재 압연기의 작업롤 전동피로해석)

  • 배원병;박해두;송길호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.292-300
    • /
    • 1995
  • According to the number of cold-rolled coils, the amount of roll wear and thermal expansion, and roll gap profile were calculated, by using the actual data from the finishing mill. Also, based on those data, the calculations of the deflection, the flattening, and the contact pressure of vwork rolls and backup rolls were made respectively. Specially, in the calculation of contact pressure, the numerical results were obtained not only during the normal rolling, but also during the abnormal rolling, by modeling mathematically the dynamic impact force which occurs when the head section of the strip is threading through rolls. With those results the growth of the fatigue region and the fatigue damage of rolls were predicted. Also the optimum roll-grinding depth was determined to maximize the roll life.

Prediction of Three-Dimensional Strip Profile for 6-High Mill in Thin-Strip Rolling (6 단 압연기의 극박 압연공정에서 3 차원 판 형상 예측)

  • Lee, Sang-Ho;Song, Gil-Ho;Lee, Sung-Jin;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.855-861
    • /
    • 2011
  • We predict the rolled-strip profile for a 6-high mill using thin rolling theory and a numerical model. In the numerical model, we calculate the distributions of the contact pressures between the rolls and the rolling pressure between the strip and the work roll in the transverse direction using the geometric structure of the 6-high mill and the boundary conditions. We determine the distribution of the rolling pressure in the rolling direction via a thin-foil rolling model using Fleck's theory. We calculate the three-dimensional elastic deformation of the work roll using the pressures of the width and rolling directions. We then obtain the three-dimensional strip profile via the elastic deformation of the work roll during the rolling process. The profile is verified by a thin cold-rolling test and FE simulation.

Contact Surface Fatigue Life for RPG System (RPG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kwon, Soon-Man;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1453-1459
    • /
    • 2011
  • A roller pinion gear (RPG) system composed of either a pin or a roller and its conjugated cam gear can improve the gear endurance from that of a conventional gear system by reducing the sliding contact while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection condition obtained when the profile shift coefficient is introduced. Then, we investigated the Hertzian contact stresses and the load stress factors while the varying the shape design parameters to predict the gear surface fatigue life, which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Fatigue Life Analysis of Rolling Contact Model Considering Stress Gradient Effect (응력 구배 효과를 고려한 구름 접촉 모델의 피로수명해석)

  • Cho, InJe;Yu, YongHun;Lee, Bora;Cho, YongJoo
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.272-280
    • /
    • 2015
  • Recently, Luu suggested fatigue life equation that uses every term of the Crossland equation with stress gradient effect. Luu’s model, however, has a limit of being unable to coverage small radii that are less than a specified length. Furthermore, rolling model has a very small contact area compared to the rolling element size, and fatigue failure occurs on the small radius such as surface asperity by cyclic loading. Therefore, it is necessary to modify fatigue life equation in order to enable fatigue analysis for a small radius. In this paper, the fatigue life considering a stress gradient effect in rolling contact was obtained using Luu’s modified equation. Fatigue analysis was performed to study the effect of stress gradient on the fatigue life using newly adopted equation and to compare the results with pervious models. In order to do this, a series of simulation such as surface stress analysis, subsurface stress analysis, and fatigue analysis are conducted for two rolling balls of same size that contact each other. Through such a series of processes, the fatigue life can be calculated and equation that is proposed in this paper evaluates the fatigue life in case the contact area is small.

Formulation of Friction Forces in LM Ball Guides (LM 볼가이드의 마찰력 정식화)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.199-206
    • /
    • 2016
  • Linear motion (LM) ball guides with rolling contact are core units of feed-drive systems. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, the friction force induced from LM ball guides generates heat, which deteriorates positioning accuracy and incurs changes of stiffness and preload. To accurately analyze the effects and apply the results to precision machine design, mathematical modeling of the friction force is required. In this paper, accurate formulation of the friction force due to rolling, viscous, and slip frictions is conducted for LM ball guides. To verify the reliability of the developed friction model, experiments are performed under various assembly, load and velocity conditions. Effects of frictional components are analyzed through the formulated friction model.

Mutual Interference of Two Surface Cracks under Hertzian Contact Loading (Hertz 접촉하중하에서의 복수표면균열의 상호간섭)

  • Kim, Sang-Woo;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3048-3057
    • /
    • 1996
  • Analysis model containing two inclined surface cracks on semi-infinite elastic body is established and analyzed on the basis of linear fracture mechanics to examine mutual interference of two surface cracks. Muskhelishvili's complex stress functions are introduced and a set of singular integral equations is obtained for a dislocation density function. The stress intensity factors at crack tip are obtained by using the Gerasoulis'method. When two surface cracks are parallel and have the same length, the values of $K_1$and $\Delta K_11$(variation of $K_11$) for crack 1 and crack 2 decrease by the mutual interference of two surface cracks as the distance between the two surface cracks shortens. The effect of mutual interference is remarkable in high friction coefficient. In case that two surface cracks are parallel, the values of $K_1$and $\Delta K_11$for crack 2 decrease as the length ratio ot crack 2 to crack 1 becomes small. As the crack inclination angle rises, the value of $K_1$ and the mutual interference of $K_1$for crack 2 increase and the value of$\Delta K_11$ for crack 1 becomes smaller than that for crack 2.

Propagation Behavior of Inclined Surface Crack of Semi-Infinite Elastic Body under Hertzian Contact (반무한 탄성체의 헤르츠 접촉하의 경사진 표면균열의 전파거동)

  • 김재호;김석삼;박중한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.624-635
    • /
    • 1990
  • Analytical study based on linear fracture mechanics was conducted on propagation behavior of inclined surface crack in semi-infinite elastic body. The analytical model was assumed to be inclined surface crack under plane strain condition upon which Hertzian stress was superimposed. Supposing continuous distribution of dislocation and applying Erdogan-Gupta's method to this crack problem, the stress intensity factors $K_{I}$ and $K_{II}$) at the crack-tip were obtained for various Hertzian contact positions. Analytic results have shown that driving force for crack growth is $K_{I}$ for non-lubricated condition and $K_{II}$ for fluid and boundary lubricated condition. The coefficient of friction at the hertzian contact and crack surfaces plays an important role in predicting the direction of crack propagation. It is also found that the maximum effective stress intensity factor exists at cracks of a certain specific length depending on lubricated condition.ion.n.

Effect of Joint Stiffness on the Rock Block Behavior in the Distinct Element Analysis (개별요소해석에서 절리강성이 블록 거동에 미치는 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • Distinct element method is a powerful numerical tool for modelling the jointed rock masses. It is also a useful tool for modelling of later stage of blasting requiring large displacement. The distinct element method utilizes a rigid block idea in which the interacting force between distinct elements is calculated from contact displacement as elements penetrate slightly. The properties of joints defined as the boundaries of distinct elements are critical parameters to determine the block behavior, and affect the deformation and failure mode. However, regardless of real joint properties, joint stiffnesses have sometimes been selected without special concern just to prevent elements from penetrating too far into each other in some quasi-static problems. Depending on whether the main interest in the analysis is the prediction of the deformation with high precision, or the prediction of the block behaviour after failure, the input data such as joint stiffness may or may not have a significant effect on the results. The purpose of this study is to provide a sound understanding of the effect of the joint stiffness on the distinct element analysis results, and to help guide the selection of input data.

Prediction of the Dynamic behavior and Contact Pressure of Overhung Rotor Systems According to the Support Characteristics of Double-row Tapered Roller Bearings (복열테이퍼 롤러베어링 지지특성에 따른 오버헝 회전축 시스템의 동적 거동 예측 및 접촉부 압력 해석)

  • Taewoo Kim;Junho Suh;Min-Soo Kim;Yonghun Yu
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.154-166
    • /
    • 2023
  • This study establishes a numerical analysis model of the finite element overhung rotor supported by a DTRB and describes the stiffness properties of the DTRB. The vibration characteristics and contact pressure of the RBR system are predicted according to the DTRB support characteristics such as the initial axial compression and roller profile. The stiffness of the DTRB significantly varies depending on the initial axial compression and external load owing to the occurrence of rollers under the no-load condition and increase in the Hertz contact force. The increase in the initial axial compression increases the rigidity of the DTRB, thereby reducing the displacement of the RBR system and simultaneously increasing the natural frequency. However, above a certain initial axial compression, the effect becomes insignificant, and an excessive increase in the initial axial compression increases the contact pressure. The roller crowning radius, which gives a curvature in the longitudinal direction of the roller, decreases the displacement of the RBR system and increases the natural frequency as the value increases. However, an increase in the crowning radius increases the edge stress, causing a negative effect in terms of the contact pressure. These results show that the DTRB support characteristics required for reducing the vibration and contact pressure of the RBR system supported by the DTRB can be designed.