• Title/Summary/Keyword: Hermitian shape functions

Search Result 16, Processing Time 0.023 seconds

The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

  • Golafshani, A.A.;Aval, S.B.B.;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.119-133
    • /
    • 2002
  • A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. The model is implemented to analyze several CFT columns under constant and non-proportional fluctuating concentric axial load and cyclic lateral load. Good agreement has been found between experimental results and theoretical analysis.

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.573-578
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfies the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfies the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beam.

  • PDF

Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams (회전하는 보의 유한요소해석을 위한 유리형상함수의 확장)

  • Kim, Yong-Woo;Jeong, Jae-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

Spatial Free Vibration and Stability Analysis of Thin-Walled Curved Beams with Variable Curvatures (곡률이 변하는 박벽 곡선보의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.321-328
    • /
    • 2000
  • An improved formulation of thin-wailed curved beams with variable curvatures based on displacement field considering the second order terms of finite semitangential rotations is presented. From linearized virtual work principle by Vlasov's assumptions, the total potential energy is derived and all displacement parameters and the warping functions are defined at cendtroid axis. In developing the thin-walled curved beam element having eight degrees of freedom per a node, the cubic Hermitian polynomials are used as shape functions. In order to verify the accuracy and practical usefulness of this study, free vibrations and buckling analyses of parabolic and elliptic arche shapes with mono-symmetric sections are carried out and compared with the results analyzed by ABAQUS' shell element.

  • PDF

Free Vibration Analysis of Monosymmetric Thin-walled Circular Curved Beam (일축대칭 단면을 갖는 박벽 원형 곡선보의 자유진동 해석)

  • 장승필;김문영;민병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.57-68
    • /
    • 1998
  • For free vibration of monosymmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for free vibration behaviors of simply supported thin-walled curved beam element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the FEM using straight beam element.

  • PDF

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Frames (박벽 공간뼈대구조의 자유진동 및 안정성해석을 위한 일반이론)

  • 김문영;김성보
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-204
    • /
    • 1998
  • The general formulation for free vibration and stability analysis of unsymmetric thin-wared space frames is presented in case where the shear deformation effects are neglected. The kinetic and total potential energies are derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including warping deformation and second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated, and load-correction stiffness matrices for off-axis distributed loadings are considered. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF

Spatial Free Vibration and Stability Analysis of Thin-Walled Arches with Variable Curvature (곡률이 변하는 박벽 아치의 3차원 자유진동 및 좌굴해석)

  • 서광진;민병철;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.169-176
    • /
    • 1999
  • An improved formulation for spatial stability md free vibration of thin-walled curved beams with variable curvature and non-symmetric cross sections are presented based on the displacement field considering the second order terms of finite semitangential rotations. By introducing Vlasov's assumptions, the total potential energy is derived from the principle of linearized virtual work for a continuum. In this formulation, all displacement parameters and the warping function are defined at the centroid axis so that the coupled terms of bending and torsion are added to the elastic strain energy. Also, the potential energy due to initial stress resultants is consistently derived corresponding to the semitangential rotation and moment. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. In order to illustrate the accuracy and practical usefulness of this study, . numerical solutions for free vibration of arches are presented and compared with resells of other researchers and solutions analyzed by the ABAQUS's shell element.

  • PDF

Exact Free Vibration Analysis of Straight Thin-walled Straight Beams (직선 박벽보에 대한 엄밀한 자유진동해석)

  • 김문영;윤희택;나성훈
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.358-365
    • /
    • 2000
  • For the general case of loading conditions and boundary conditions, it is very difficult to obtain closed form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. In consequence, most of previous finite element formulations are introduce approximate displacement fields to use shape functions as Hermitian polynomials, and so on. The Purpose of this study is to presents a consistent derivation of exact dynamic stiffness matrices of thin-walled straight beams, to be used ill tile free vibration analysis, in which almost types of boundary conditions are exist An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element of nonsymmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequency is evaluated for the thin-walled straight beam structure, and the results are compared with analytic solutions in order to verify the accuracy of this study.

  • PDF

Free Vibration Analysis of Thin-walled Circular Arch with Unsymmetric Section (비대칭 단면을 갖는 박벽 원형아치의 자유진동 해석)

  • 김문영;민병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.465-472
    • /
    • 1998
  • In this study, analytic solution and finite element formulation for the free vibration analysis of thin-walled circular arch, based on linearized virtual work and Vlasov's assumption, including restrained warping effect and second order terms of finite semitangential rotations, is presented. The total potential energy is derived by applying the Hellinger-Reissner principle. In this formulation, all displacement parameters of deformation are defined at the centroid axis. For the finite element formulation, the two node cubic Hermitian polynomials are utilized as shape functions. In special case, potential energy functional of thin-walled curved beam with monosymmetric cross section is derived. From this methodology, analytic solution for the free vibration of monosymmetric circular arch with simply supported is derived. In order to illustrate the accuracy of this study, various parameter studies for free vibration of circular arches are presented and compared with numerical solution analyzed by the FEM using straight beam element.

  • PDF

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Beam-Columns and Frames (박벽 공간 보-기둥과 뼈대구조의 자유진동 및 안정성 해석을 위한 일반이론)

  • 김성보;구봉근;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.239-246
    • /
    • 1997
  • The general formulation of free vibration and stability analysis of unsymmetric thin-walled space frames and beam-columns is presented. The kinetic and total potential energy is derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF