• Title/Summary/Keyword: Hermite-Hadamard's inequality

Search Result 16, Processing Time 0.017 seconds

ON IMPROVEMENTS OF SOME INTEGRAL INEQUALITIES

  • Kadakal, Mahir;Iscan, Imdat;Kadakal, Huriye;Bekar, Kerim
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.441-452
    • /
    • 2021
  • In this paper, improved power-mean integral inequality, which provides a better approach than power-mean integral inequality, is proved. Using Hölder-İşcan integral inequality and improved power-mean integral inequality, some inequalities of Hadamard's type for functions whose derivatives in absolute value at certain power are quasi-convex are given. In addition, the results obtained are compared with the previous ones. Then, it is shown that the results obtained together with identity are better than those previously obtained.

EXTENDED HERMITE-HADAMARD(H-H) AND FEJER'S INEQUALITIES BASED ON GEOMETRICALLY-s-CONVEX FUNCTIONS IN THIRD AND FOURTH SENSE

  • SABIR YASIN;MASNITA MISIRAN;ZURNI OMAR;RABIA LUQMAN
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.963-972
    • /
    • 2023
  • In this paper, geometrically convex and s-convex functions in third and fourth sense are merged to form (g, s)-convex function. Characterizations of (g, s)-convex function, algebraic and functional properties are presented. In addition, novel functions based on the integral of (g, s)-convex functions in the third sense are created, and inequality relations for these functions are explored and examined under particular conditions. Further, there are also some relationships between (g, s)-convex function and previously defined functions. The (g, s)-convex function and its derivatives will then be used to extend the well-known H-H and Fejer's type inequalities. In order to obtain the previously mentioned conclusions, several special cases from previous literature for extended H-H and Fejer's inequalities are also investigated. The relation between the average (mean) values and newly created H-H and Fejer's inequalities are also examined.

A PERTURBED TRAPEZOID INEQUALITY IN TERMS OF THE FOURTH DERIVATIVE

  • Barnett, N.S.;Dragomir, S.S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.45-60
    • /
    • 2002
  • Some error estimates in terms of the p-norms of the fourth derivative for the remainder in a perturbed trapezoid formula are given. Applications for the expectation of a random variable and the Hermite-Hadamard divergence in Information Theory are also pointed out.

TIME SCALES INTEGRAL INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS

  • Baric, Josipa;Bibi, Rabia;Bohner, Martin;Pecaric, Josip
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.465-477
    • /
    • 2013
  • In this paper, two different methods of proving Jensen's inequality on time scales for superquadratic functions are demonstrated. Some refinements of classical inequalities on time scales are obtained using properties of superquadratic functions and some known results for isotonic linear functionals.

CERTAIN GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR LOCAL FRACTIONAL INTEGRALS

  • Choi, Junesang;Set, Erhan;Tomar, Muharrem
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.601-617
    • /
    • 2017
  • We give a function associated with generalized Ostrowski type inequality and its integral representation for local fractional calculus. Then, using this function and its integral representation, we establish several inequalities of generalized Ostrowski type for twice local fractional differentiable functions. We also consider some special cases of the main results which are further applied to a concrete function to yield two interesting inequalities associated with two generalized means.

MONOTONICITY AND LOGARITHMIC CONVEXITY OF THREE FUNCTIONS INVOLVING EXPONENTIAL FUNCTION

  • Guo, Bai-Ni;Liu, Ai-Qi;Qi, Feng
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.387-392
    • /
    • 2008
  • In this note, an alternative proof and extensions are provided for the following conclusions in [6, Theorem 1 and Theorem 3]: The functions $\frac1{x^2}-\frac{e^{-x}}{(1-e^{-x})^2}\;and\;\frac1{t}-\frac1{e^t-1}$ are decreasing in (0, ${\infty}$) and the function $\frac{t}{e^{at}-e^{(a-1)t}}$ for a $a{\in}\mathbb{R}\;and\;t\;{\in}\;(0,\;{\infty})$ is logarithmically concave.

  • PDF