• Title/Summary/Keyword: Hermite interpolation

Search Result 62, Processing Time 0.025 seconds

A Study on the Static Analysis of the Helically Curved Members using Finite Element (유한요소법을 이용한 나선형(螺旋形) 곡선부재의 정적해석에 관한 연구)

  • Yhim, Sung Soon;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.215-225
    • /
    • 1988
  • The curved structures in space, such as multi-level interchanges, ramped structures, and circular curved structures can be modelled as helically curved members with constant helix angle. This paper presents a finite element approach for the analysis of the static and the free vibration characteristics of the helically curved members by using the 7th order Hermite interpolation functions. This method is used to find more accurate solution of the static and dynamic responses of them than those of the previous studies.

  • PDF

AN ERROR BOUND ANALYSIS FOR CUBIC SPLINE APPROXIMATION OF CONIC SECTION

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.741-754
    • /
    • 2002
  • In this paper we present an error bound for cubic spline approximation of conic section curve. We compare it to the error bound proposed by Floater [1]. The error estimating function proposed in this paper is sharper than Floater's at the mid-point of parameter, which means the overall error bound is sharper than Floater's if the estimating function has the maximum at the midpoint.

GEOMETRIC CONIC SPLINE APPROXIMATION IN CAGD

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.331-347
    • /
    • 2002
  • We characterize the best geometric conic approximation to regular plane curve and verify its uniqueness. Our characterization for the best geometric conic approximation can be applied to degree reduction, offset curve approximation or convolution curve approximation which are very frequently occurred in CAGD (Computer Aided Geometric Design). We also present the numerical results for these applications.

Fluid Particle Dispersion in a Turbulent Channel Flow (난류 채널 유동에서의 유체 입자 분산)

  • Choi Jung-Il;Lee Changhoon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.803-806
    • /
    • 2002
  • The dispersion of Lagrangian fluid particles in a turbulent channel flow is studied by a direct numerical simulation. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted by assesing the acceleration of fluid particles. In order to characterize the inhomogeneous Lagrangian statistics, accurate single particle Lagrangian statistics are obtained along the wall normal direction. Integral time scales of Lagrangian velocity can be normalized by Eulerian mean shear stresses.

  • PDF

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian Method

  • Seo, Il-Won;Kim, Dae-Geun
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.51-66
    • /
    • 1995
  • Various Eulerian-Lagerangian numerical models for the one-dimensional longtudinal dispersion equation are studied comparatively. In the models studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing advection and the other dispersion. The advection equation has been solved using the method of characteristics following flud particles along the characteristic line and the result are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpo;ation po;ynomials are superor to Lagrange interpolation polynomials in reducing both dissipation and dispersion errors.

  • PDF

Comparison of Various Shear Deformation Functions for Laminated Composite/Sandwich Plates (복합적층 및 샌드위치판 전단변형함수에 관한 상호비교연구)

  • Park, Won-Tae;Chang, Suk-Yoon;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, we used various shear deformation functions for modelling isotropic, symmetric composite and sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, are predicted the reasonable accuracy for investigated problems. Particularly, The present results show that the use of exponential shear deformation theory (Karama et al. 2003; Aydogu 2009) provides very good solutions for composite and sandwich plates.

  • PDF

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

Locking-free Straight Beam Element by a Modified Transverse Displacement Field (수정 횡변위장에 의한 강성과잉이 없는 직선 보 요소)

  • 이팔갑;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2287-2297
    • /
    • 1992
  • The Formulation of a new Hermite straight beam element to eliminate the shear locking is presented. All the kinematic variables in Timoshenko beam are reinterpreted by the consideration of equilibrium equations together. It shows that when the modified transverse displacement field is used the Timoshenko beam looks apparently the same as the Euler beam. The element is formulated for the modified transverse displacement field to have the same interpolation scheme as that in the Hermite element. Transformation Matrix which relates a modified nodal vector with nonmodified one is also introduced to deal with general boundary conditions. Several examples are demonstrated and discussed for the purpose of verification of the concepts employed. The solutions obtained reveal that the element describes of the beam quite correctly, showing no locking and that it is also applicable to the analysis of both thin and thick beams.

Comparative analysis of methods for digital simulation (디지털 전산모사를 위한 방법론 비교분석)

  • Yi, Dokkyun;Park, Jieun
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.209-218
    • /
    • 2015
  • Computer simulation plays an important role for a theoretical foundation in convergence technology and the interpolation is to know the unknown values from known values on grid points. Therefore it is an important problem to select an interpolation method for digital simulation. The aim of this paper is to compare analysis of interpolation methods for digital simulation. we test six different interpolation methods namely: Quartic-Lagrangian, Cubic Spline, Fourier, Hermit, PWENO and SL-WENO. Through digital simulation of a linear advection equation, we analyse pros and cons for each method. In order to compare performance, we introduce accuracy computing and Error functions. The accuracy computing is used well-known $L^1-norm$ and the Error functions are dispersion function, dissipation function and total error function. High-order methods well apply to computer simulation, unfortunately, side-effects (Oscillation) happen.

Composition of efficient monitoring system using an interpolation (보간법을 이용한 효율적인 모니터링 시스템 구성)

  • Lee, Sang-Hyeok;Kang, Feel-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.290-298
    • /
    • 2008
  • This paper presents an efficient data storage and reconstruction method in data acquisition and processing of monitoring system. The proposed method extracts minimum data using an interpolation from raw data which are acquired from a target system. They are transferred and saved in a monitoring PC via TCP/IP communication, and then reconstructed as original signals. Therefore, it is possible to design an efficient monitoring system by the improved data communication speed due to the reduced communication packet, and it reduces the storage space. The algorithm for data acquisition and reconstruction is based on Cubic Hermite interpolation. To verify the validity of the proposed scheme, we presents simulation results compared with other interpolation based approaches. Finally, it is applied to a monitoring system for grid-connected photovoltaic power generation system to prove the high-performance of the proposed method.