• 제목/요약/키워드: Hermite functions

검색결과 77건 처리시간 0.022초

Hermite 유한요소에 의한 자연대류 유동계산 (COMPUTATIONS OF A NATURAL CONVECTION FLOW USING HERMITE FINITE ELEMENTS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.220-225
    • /
    • 2007
  • This paper is a continuation of the recent development on the hermite-based divergence free basis function and deals with a non-isothermal fluid flow thru the buoyancy driven flow in a square cavity with temperature difference across the two sides. The basis functions for the velocities consist of the hermite function and its curl. However, the basis for the temperature are the hermite function and its gradienst. Hence, the number of degrees of freedom at a node becomes 6, which are the stream function, two velocities, the temperature and its x- and y-derivatives. Numerical results for the streamlines, the temperatures, the x-velocities and the y-velocities show good agreements with those of De vahl Davis[7].

  • PDF

SOME NEW ESTIMATES FOR EXPONENTIALLY (ħ, m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS

  • Rashid, Saima;Noor, Muhammad Aslam;Noor, Khalida Inayat
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.843-860
    • /
    • 2019
  • In the article, we present several new Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for the exponentially (ħ, m)-convex functions via an extended generalized Mittag-Leffler function. As applications, some variants for certain typ e of fractional integral operators are established and some remarkable special cases of our results are also have been obtained.

이차원 비압축성 유동 계산을 위한 Hermite 겹 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.13-23
    • /
    • 2008
  • This paper is an extension of previous study[1] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite (serendipity) cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires four degrees-of-freedom at each element corners. Those degrees-of-freedom are the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational basis functions from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[2].

SUPERQUADRATIC FUNCTIONS AND REFINEMENTS OF SOME CLASSICAL INEQUALITIES

  • Banic, Senka;Pecaric, Josip;Varosanec, Sanja
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.513-525
    • /
    • 2008
  • Using known properties of superquadratic functions we obtain a sequence of inequalities for superquadratic functions such as the Converse and the Reverse Jensen type inequalities, the Giaccardi and the Petrovic type inequalities and Hermite-Hadamard's inequalities. Especially, when the superquadratic function is convex at the same time, then we get refinements of classical known results for convex functions. Some other properties of superquadratic functions are also given.

HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRIC-ARITHMETICALLY s-CONVEX FUNCTIONS

  • Hua, Ju;Xi, Bo-Yan;Qi, Feng
    • 대한수학회논문집
    • /
    • 제29권1호
    • /
    • pp.51-63
    • /
    • 2014
  • In the paper, several properties of geometric-arithmetically s-convex functions are provided, an integral identity in which the integrands are products of a function and a derivative is found, and then some inequalities of Hermite-Hadamard type for integrals whose integrands are products of a derivative and a function whose derivative is of the geometric-arithmetic s-convexity are established.

NEW GENERALIZATION OF THE WRIGHT SERIES IN TWO VARIABLES AND ITS PROPERTIES

  • Belafhal, Abdelmajid;Chib, Salma;Usman, Talha
    • 대한수학회논문집
    • /
    • 제37권1호
    • /
    • pp.177-193
    • /
    • 2022
  • The main aim of this paper is to introduce a new generalization of the Wright series in two variables, which is expressed in terms of Hermite polynomials. The properties of the freshly defined function involving its auxiliary functions and the integral representations are established. Furthermore, a Gauss-Hermite quadrature and Gaussian quadrature formulas have been established to evaluate some integral representations of our main results and compare them with our theoretical evaluations using graphical simulations.

GENERALIZATION OF MULTI-VARIABLE MODIFIED HERMITE MATRIX POLYNOMIALS AND ITS APPLICATIONS

  • Singh, Virender;Khan, Mumtaz Ahmad;Khan, Abdul Hakim
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.269-291
    • /
    • 2020
  • In this paper, we get acquainted to a new generalization of the modified Hermite matrix polynomials. An explicit representation and expansion of the Matrix exponential in a series of these matrix polynomials is obtained. Some important properties of Modified Hermite Matrix polynomials such as generating functions, recurrence relations which allow us a mathematical operations. Also we drive expansion formulae and some operational representations.

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • 호남수학학술지
    • /
    • 제43권2호
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

EXTENDED HERMITE-HADAMARD(H-H) AND FEJER'S INEQUALITIES BASED ON GEOMETRICALLY-s-CONVEX FUNCTIONS IN THIRD AND FOURTH SENSE

  • SABIR YASIN;MASNITA MISIRAN;ZURNI OMAR;RABIA LUQMAN
    • Journal of applied mathematics & informatics
    • /
    • 제41권5호
    • /
    • pp.963-972
    • /
    • 2023
  • In this paper, geometrically convex and s-convex functions in third and fourth sense are merged to form (g, s)-convex function. Characterizations of (g, s)-convex function, algebraic and functional properties are presented. In addition, novel functions based on the integral of (g, s)-convex functions in the third sense are created, and inequality relations for these functions are explored and examined under particular conditions. Further, there are also some relationships between (g, s)-convex function and previously defined functions. The (g, s)-convex function and its derivatives will then be used to extend the well-known H-H and Fejer's type inequalities. In order to obtain the previously mentioned conclusions, several special cases from previous literature for extended H-H and Fejer's inequalities are also investigated. The relation between the average (mean) values and newly created H-H and Fejer's inequalities are also examined.