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GENERALIZATION OF INEQUALITIES ANALOGOUS TO

HERMITE–HADAMARD INEQUALITY

VIA FRACTIONAL INTEGRALS

Muhammad Iqbal, Muhammad Iqbal Bhatti, and Kiran Nazeer

Abstract. Some Hermite–Hadamard type inequalities for the fractional
integrals are established and these results have some relationship with
the obtained results of [11, 12].

1. Introduction

The usefulness of inequalities involving convex functions is realized from the
very beginning and is now widely acknowledged as one of the prime driving
forces behind the development of several modern branches of mathematics and
has been given considerable attention. One of the most famous inequalities for
convex functions is Hermite–Hadamard inequality, stated as [8]:

Let f : I ⊂ R → R be a convex function on the interval I of real numbers
and a, b ∈ I with a < b. Then

(1) f

(

a+ b

2

)

≤
1

b− a

∫ b

a

f(x) dx ≤
f(a) + f(b)

2
.

Both inequalities hold in the reversed direction for f to be concave.
In recent years, numerous generalizations, extensions and variants of Her-

mite–Hadamard inequality (1) were studied extensively by many researchers
and appeared in a number of papers, see [8, 10, 11, 12, 13].

Now, some necessary definitions and mathematical preliminaries of fractional
calculus theory are presented, which are used further in this paper.

Definition 1 ([9]). Let f ∈ L1[a, b]. The left–sided and right–sided Riemann–
Liouville fractional integrals of order α > 0 with a ≥ 0 are defined by

Jα
a+f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, a < x
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and

Jα
b−f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively, where Γ(·) is Gamma function and its definition is

Γ(α) =

∫

∞

0

e−uuα−1du.

It is to be noted that J0
a+f(x) = J0

b−f(x) = f(x). In the case of α = 1, the
fractional integral reduces to the classical integral.

Using Riemann–Liouville fractional integral, many authors have studied the
fractional integral inequalities and applications. For example, we refer the
reader to [1, 2, 3, 5, 6] and the references cited therein. For results connected
with Hermite–Hadamard type inequalities involving fractional integrals one can
see [4, 7, 14].

In [14] Sarikaya et al. proved a variant of Hermite–Hadamard’s inequalities
in fractional integral forms as follows:

Theorem 1. Let f : [a, b] → R be a positive function with 0 ≤ a < b and

f ∈ L1[a, b]. If f is a convex function on [a, b], then the following inequalities

for fractional integrals hold:

(2) f

(

a+ b

2

)

≤
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] ≤

f(a) + f(b)

2

with α > 0

Remark 1. For α = 1, inequality (2) reduces to inequality (1).

The aim of this paper is to establish left Hermite–Hadamard type inequal-
ities for Riemann–Liouville fractional integral using the identity obtained for
fractional integrals.

2. Main results

In order to obtain our results, we modified [11, Lemma 2.1] as following:

Lemma 1. Let f : [a, b] → R be a differentiable function on (a, b). If f ′ ∈
L1[a, b], then the following identity for Riemann–Liouville fractional integrals

holds:

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)] =

b− a

2

4
∑

k=1

Ik,

where

I1 =

∫ 1/2

0

tαf ′(tb + (1− t)a)dt, I2 =

∫ 1/2

0

(−tα)f ′(ta+ (1 − t)b)dt,

I3 =

∫ 1

1/2

(tα − 1)f ′(tb + (1− t)a)dt, I4 =

∫ 1

1/2

(1− tα)f ′(ta+ (1− t)b)dt.
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Proof. Integrating by parts

I1 =

∫ 1/2

0

tαf ′(tb+ (1 − t)a)dt

=
tαf(tb+ (1− t)a)

b− a

∣

∣

∣

∣

1/2

0

−
α

b− a

∫ 1/2

0

tα−1f(tb+ (1 − t)a)dt

=
2−α

b− a
f

(

a+ b

2

)

−
α

b− a

∫ 1/2

0

tα−1f(tb+ (1− t)a)dt.

Analogously:

I2 =
2−α

b− a
f

(

a+ b

2

)

−
α

b− a

∫ 1/2

0

tα−1f(ta+ (1 − t)b)dt

and

I3 =

∫ 1

1/2

(tα − 1)f ′(tb+ (1− t)a)dt

=
(tα − 1)f(tb+ (1− t)a)

b− a

∣

∣

∣

∣

1

1/2

−
α

b− a

∫ 1

1/2

tα−1f(tb+ (1− t)a)dt

=
1− 2−α

b− a
f

(

a+ b

2

)

−
α

b− a

∫ 1

1/2

tα−1f(tb+ (1 − t)a)dt.

Analogously:

I4 =
1− 2−α

b− a
f

(

a+ b

2

)

−
α

b− a

∫ 1

1/2

tα−1f(ta+ (1− t)b)dt.

Adding above equalities, we get

2

b − a
f

(

a+ b

2

)

−
α

b− a

[
∫ 1

0

tα−1f(tb+ (1− t)a)dt+

∫ 1

0

tα−1f(ta+ (1− t)b)dt

]

= I1 + I2 + I3 + I4.

Now making substitution u = tb+ (1 − t)a, we have
∫ 1

0

tα−1f(tb+ (1− t)a)dt =
1

(b− a)α

∫ b

a

(u− a)α−1f(u)du

=
Γ(α)

(b− a)α
Jα
b−f(a),

likewise
∫ 1

0

tα−1f(ta+ (1− t)b)dt =
Γ(α)

(b − a)α
Jα
a+f(b),

which completes our proof. �
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New upper bound for the left-hand side of (2) for convex functions is pro-
posed in the following theorem.

Theorem 2. Let f : [a, b] → R be a differentiable function on (a, b) with a < b.

If |f ′| is convex on [a, b], then the following inequality for Riemann–Liouville

fractional integrals holds for 0 < α ≤ 1:

(3)

∣

∣

∣

∣

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣

∣

∣

∣

≤
b− a

2α+1(α+ 1)
(|f ′(a)|+ |f ′(b)|).

Proof. By using the properties of modulus on Lemma 1, we have

∣

∣

∣

∣

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣

∣

∣

∣

≤
b− a

2

4
∑

k=1

|Ik|.

Now, using convexity of |f ′|, we have

|I1| ≤

∫ 1/2

0

tα|f ′(tb+ (1 − t)a)|dt

≤ |f ′(b)|

∫ 1/2

0

tα+1dt+ |f ′(a)|

∫ 1/2

0

tα(1− t)dt

=
1

2α+2(α+ 2)
|f ′(b)|+

(α+ 3)

2α+2(α+ 1)(α+ 2)
|f ′(a)|.

Analogously:

|I2| ≤
1

2α+2(α+ 2)
|f ′(a)|+

(α+ 3)

2α+2(α+ 1)(α+ 2)
|f ′(b)|.

By using the convexity on |f ′| and fact that for α ∈ (0, 1] and ∀ t1, t2 ∈ [0, 1],

|t1
α − t2

α| ≤ |t1 − t2|
α,

|I3| ≤ |f ′(b)|

∫ 1

1/2

(1− tα)t dt+ |f ′(a)|

∫ 1

1/2

(1− tα)(1− t) dt

≤ |f ′(b)|

∫ 1

1/2

(1− t)αt dt+ |f ′(a)|

∫ 1

1/2

(1− t)α+1 dt

=
α+ 3

2α+2(α+ 1)(α+ 2)
|f ′(b)|+

1

2α+2(α+ 2)
|f ′(a)|,

similarly

|I4| ≤
α+ 3

2α+2(α+ 1)(α+ 2)
|f ′(a)|+

1

2α+2(α+ 2)
|f ′(b)|,

which completes the proof. �
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Remark 2. If we take α = 1 in Theorem 2, then inequality (3) becomes in-
equality as obtained in [11, Theorem 2.2].

The corresponding version for powers of the absolute value of the derivative
is incorporated in the following theorem.

Theorem 3. Let f : [a, b] → R be a differentiable function on (a, b) such that

f ′ ∈ L1[a, b]. If |f ′|
p

p−1 is convex on [a, b] for some fixed p ≥ 1 with q = p
p−1

,

then the following inequality for fractional integrals holds for 0 < α ≤ 1:
(4)

∣

∣

∣

∣

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣

∣

∣

∣

≤
b− a

2α+1(αp+ 1)1/p

[

(

3|f ′(a)|q + |f ′(b)|q

4

)1/q

+

(

|f ′(a)|q + 3|f ′(b)|q

4

)1/q
]

.

Proof. From Lemma 1 and using Hölder inequality with properties of modulus,
we have

∣

∣

∣

∣

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣

∣

∣

∣

≤
b− a

2

4
∑

k=1

|Ik|.

By using the convexity of |f ′|q, we have

|I1| ≤

(

∫ 1/2

0

tαpdt

)1/p(
∫ 1/2

0

|f ′ (tb+ (1− t)a)|
q
dt

)1/q

≤

(

1

2αp+1(αp+ 1)

)1/p
(

|f ′(b)|q
∫ 1/2

0

t dt+ |f ′(a)|q
∫ 1/2

0

(1− t)dt

)1/q

=

(

1

2αp+1(αp+ 1)

)1/p(
|f ′(b)|q + 3|f ′(a)|q

8

)1/q

,

similarly

|I2| ≤

(

1

2αp+1(αp+ 1)

)1/p(
3|f ′(b)|q + |f ′(a)|q

8

)1/q

,

now

|I3| ≤

(

∫ 1

1/2

(1− tα)pdt

)1/p(
∫ 1

1/2

|f ′ (tb+ (1− t)a)|
q
dt

)1/q

.

Let α ∈ (0, 1] and ∀ t1, t2 ∈ [0, 1],

|t1
α − t2

α| ≤ |t1 − t2|
α,

therefore
∫ 1

1/2

(1− tα)pdt ≤

∫ 1

1/2

(1 − t)αpdt =
1

2αp+1(αp+ 1)
.
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Hence

|I3| ≤

(

1

2αp+1(αp+ 1)

)1/p(
3|f ′(b)|q + |f ′(a)|q

8

)1/q

,

and

|I4| ≤

(

1

2αp+1(αp+ 1)

)1/p(
3|f ′(a)|q + |f ′(b)|q

8

)1/q

,

which completes the proof. �

Remark 3. If we take α = 1 in Theorem 3, then inequality (4) becomes in-
equality (2.1) of [11, Theorem 2.3].

Another similar result may be extended in the following theorem.

Theorem 4. Let f : [a, b] → R be a differentiable function on (a, b) such that

f ′ ∈ L1[a, b]. If |f ′|
p

p−1 is convex on [a, b] for some fixed p > 1 with q = p
p−1

,

then the following inequality for fractional integrals holds for α > 0:

(5)

∣

∣

∣

∣

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣

∣

∣

∣

≤
b− a

2α+1(α+ 1)

[

(

(α+ 1)|f ′(b)|q + (α+ 3)|f ′(a)|q

2(α+ 2)

)1/q

+

(

(α+ 1)|f ′(a)|q + (α+ 3)|f ′(b)|q

2(α+ 2)

)1/q
]

.

Proof. Using the well-known power-mean integral inequality for q > 1 [12], we
have

|I1| ≤

(

∫ 1/2

0

tαdt

)1−1/q(
∫ 1/2

0

tα |f ′ (tb + (1− t)a)|
q
dt

)1/q

.

By convexity of |f ′|q

|I1| ≤

(

1

2α+1(α+ 1)

)1−1/q (
1

2α+2(α+ 2)
|f ′(b)|q

+
α+ 3

2α+2(α + 1)(α+ 2)
|f ′(a)|q

)1/q

=
1

2α+1(α+ 1)

(

(α + 1)|f ′(b)|q + (α+ 3)|f ′(a)|q

2(α+ 2)

)1/q

.

Analogously:

|I2| ≤
1

2α+1(α+ 1)

(

(α+ 1)|f ′(a)|q + (α+ 3)|f ′(b)|q

2(α+ 2)

)1/q
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|I3| ≤
1

2α+1(α+ 1)

(

(α+ 1)|f ′(a)|q + (α+ 3)|f ′(b)|q

2(α+ 2)

)1/q

and

|I4| ≤
1

2α+1(α + 1)

(

(α+ 1)|f ′(b)|q + (α+ 3)|f ′(a)|q

2(α+ 2)

)1/q

.

Combining all the obtained inequalities, we get desired inequality. Which com-
pletes the proof. �

Corollary 1. Let f : [a, b] → R be a differentiable function on (a, b) such that

f ′ ∈ L1[a, b]. If the function |f ′|q with q > 1 is convex on [a, b], then
∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(x)dx − f

(

a+ b

2

)

∣

∣

∣

∣

∣

≤
b− a

8

(

1 + 21/q

31/p

)

[|f ′(a)|+ |f ′(b)|].(6)

Proof. If we take α = 1 in Theorem 4, then inequality (5) becomes as:
∣

∣

∣

∣

∣

1

b− a

∫ b

a

f(x)dx − f

(

a+ b

2

)

∣

∣

∣

∣

∣

≤
b − a

8

[

(

2|f ′(a)|q + |f ′(b)|q

3

)1/q

+

(

|f ′(a)|q + 2|f ′(b)|q

3

)1/q
]

,

which can be made equivalent to (6) by using the fact:

n
∑

i=1

(ai + bi)
r ≤

n
∑

i=1

ai
r +

n
∑

i=1

bi
r

for 0 ≤ r < 1, a1, a2, . . . , an ≥ 0 and b1, b2, . . . , bn ≥ 0. �

Remark 4. Inequality (6) is an improvement of obtained inequality as in [12,
Theorem 2.1].

Theorem 5. Let f : [a, b] → R be a differentiable function on (a, b) such that

f ′ ∈ L1[a, b]. If |f ′|q is concave on [a, b] for some fixed p ≥ 1 with q = p
p−1

,

then the following inequality for fractional integrals holds for α > 0:

(7)

∣

∣

∣

∣

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣

∣

∣

∣

≤
b− a

2α+1

(

1

αp+ 1

)1/p [∣
∣

∣

∣

f ′

(

a+ 3b

4

)∣

∣

∣

∣

+

∣

∣

∣

∣

f ′

(

3a+ b

4

)∣

∣

∣

∣

]

.

Proof. From Lemma 1 and using Hölder inequality, we have

|I1| ≤

(

∫ 1/2

0

tαpdt

)1/p(
∫ 1/2

0

|f ′ (tb+ (1 − t)a)|
q
dt

)1/q

.
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Since |f ′|q is concave on [a, b]; we can use the integral Jensen’s inequality to
obtain
∫ 1/2

0

|f ′ (tb+ (1− t)a)|
q
dt =

∫ 1/2

0

t0 |f ′ (tb+ (1 − t)a)|
q
dt

≤

(

∫ 1/2

0

t0dt

)
∣

∣

∣

∣

∣

f ′

(

∫ 1/2

0
t0(tb+ (1− t)a)dt
∫ 1/2

0
t0dt

)
∣

∣

∣

∣

∣

q

=
1

2

∣

∣

∣

∣

f ′

(

3a+ b

4

)∣

∣

∣

∣

q

.

Analogously:
∫ 1/2

0

|f ′ (ta+ (1− t)b)|
q
dt ≤

1

2

∣

∣

∣

∣

f ′

(

a+ 3b

4

)∣

∣

∣

∣

q

,

∫ 1

1/2

|f ′ (tb+ (1− t)a)|
q
dt ≤

1

2

∣

∣

∣

∣

f ′

(

a+ 3b

4

)∣

∣

∣

∣

q

,

∫ 1/2

0

|f ′ (ta+ (1− t)b)|
q
dt ≤

1

2

∣

∣

∣

∣

f ′

(

3a+ b

4

)
∣

∣

∣

∣

q

.
�

Remark 5. If we take α = 1 in Theorem 5, then inequality (7) becomes in-
equality (2.5) of [10, Theorem 5].

In the following, we obtain estimate of Hermite–Hadamard inequality (2)
for concave functions.

Theorem 6. Let f : [a, b] → R be a differentiable function on (a, b) such that

f ′ ∈ L1[a, b]. If |f ′|q is concave on [a, b] for some fixed p > 1 with q = p
p−1

,

then the following inequality for fractional integrals holds for α > 0:
(8)

∣

∣

∣

∣

f

(

a+ b

2

)

−
Γ(α+ 1)

2(b− a)α
[Jα

a+f(b) + Jα
b−f(a)]

∣

∣

∣

∣

≤
b− a

2α+1(α+ 1)

[∣

∣

∣

∣

f ′

(

(α+ 1)a+ (α+ 3)b

2(α+ 2)

)∣

∣

∣

∣

+

∣

∣

∣

∣

f ′

(

(α+ 3)a+ (α+ 1)b

2(α+ 2)

)∣

∣

∣

∣

]

.

Proof. Using the concavity of |f ′|q and the power-mean inequality, we obtain

|f ′(tx+ (1− t)y)|q > t|f ′(x)|q + (1− t)|f ′(y)|q

≥ (t|f ′(x)| + (1− t)|f ′(y)|)q.

Hence

|f ′(tx+ (1− t)y)| ≥ t|f ′(x)| + (1− t)|f ′(y)|,

so, |f ′| is also concave. By the Jensen integral inequality, we have

|I1| ≤

(

∫ 1/2

0

tαdt

)
∣

∣

∣

∣

∣

f ′

(

∫ 1/2

0
tα(tb + (1− t)a)dt
∫ 1/2

0
tαdt

)
∣

∣

∣

∣

∣

q
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=
1

2α+1(α+ 1)

∣

∣

∣

∣

f ′

(

(α+ 3)a+ (α+ 1)b

2(α+ 2)

)
∣

∣

∣

∣

q

.

Analogously:

|I2| ≤
1

2α+1(α+ 1)

∣

∣

∣

∣

f ′

(

(α + 1)a+ (α+ 3)b

2(α+ 2)

)∣

∣

∣

∣

q

,

|I3| ≤
1

2α+1(α+ 1)

∣

∣

∣

∣

f ′

(

(α + 1)a+ (α+ 3)b

2(α+ 2)

)∣

∣

∣

∣

q

,

|I4| ≤
1

2α+1(α+ 1)

∣

∣

∣

∣

f ′

(

(α + 3)a+ (α+ 1)b

2(α+ 2)

)∣

∣

∣

∣

q

,

which completes the proof. �

Corollary 2. Let f : [a, b] → R be a differentiable mapping on (a, b) such that

f ′ ∈ L1[a, b]. If p > 1 with q = p
p−1

and |f ′|q is concave on [a, b], then
∣

∣

∣

∣

∣

1

b−a

∫ b

a

f(x)dx−f

(

a+b

2

)

∣

∣

∣

∣

∣

≤
b−a

8

[∣

∣

∣

∣

f ′

(

a+ 2b

3

)∣

∣

∣

∣

+

∣

∣

∣

∣

f ′

(

2a+b

3

)∣

∣

∣

∣

]

.(9)

Proof. If we take α = 1 in Theorem 5, then inequality (7) becomes (9). �

Remark 6. Inequality (9) can be made equivalent to inequality as obtained in
[12, Theorem 2.2] by assuming the linearity of |f ′|.
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