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HERMITE-HADAMARD TYPE INEQUALITIES FOR
GEOMETRIC-ARITHMETICALLY s-CONVEX FUNCTIONS

JU Hua, Bo-YAN Xi1, AND FENG QI

ABSTRACT. In the paper, several properties of geometric-arithmetically
s-convex functions are provided, an integral identity in which the inte-
grands are products of a function and a derivative is found, and then
some inequalities of Hermite-Hadamard type for integrals whose inte-
grands are products of a derivative and a function whose derivative is of
the geometric-arithmetic s-convexity are established.

1. Introduction
The following definitions are well known in the literature.
Definition 1.1. A function f: I CR = (—00,00) — R is said to be convex if
(1.1) fltz+ (1 —t)y) <tf(zx)+ 1 -1)f(y)
holds for all z,y € I and t € [0, 1].

Let f: I CR — R be a convex function on I and a,b € I with a < b. The
inequality

(1.2) f (““’) < 1 /abf(x)dxg f(a) + f(b)

2 b—a 2

is well known as Hermite-Hadamard inequality for convex functions.

Definition 1.2 ([7]). For some s € (0,1], a function f : Ry = [0,00) = Ry is
said to be s-convex (in the second sense) if

(1.3) FOz 4+ (1= Ny) <N f(x)+ (1 =N f(y)
holds for all z,y € I and A € [0, 1].
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Definition 1.3 ([13, 14]). A function f: I C Ry = (0,00) — R is said to be
geometric-arithmetically convex if
Flaty'™") <tf(2) + (1 - 0)f(y)
holds for all z,y € I and t € [0, 1].
Definition 1.4 ([9, Definition 5] and [18, Definition 2.1]). For some s € (0, 1],
a function f: I C Ry — R is said to be geometric-arithmetically s-convex if
flaty'™) <t fla) + (1 =) f(y)
holds for all z,y € I and t € [0, 1].
In recent decades, a lot of inequalities of Hermite-Hadamard type for var-

ious kinds of convex functions have been established. Some of them may be
reformulated as follows.

Theorem 1.1 ([5, Theorem 2.2]). Let f : I° C R — R be a differentiable
mapping on I° and a,b € I° with a < b. If | f'(x)| is convex on [a,b], then

fla +f b*a)(|f'(a)|+|f'(b)|)
(1.4) f :
—a 8
Theorem 1.2 ([12, Theorems 1 and 3]). Let f: I C Ry — R be differentiable
on I° and a,b € I with a < b.
(1) If |f'(z)|? is s-convex on [a,b] for some fized s € (0,1] and ¢ > 1, then

(1.5) ‘f )+ fb _a/f )dx
< b2“<§>1 R L IO

(2) If |f’(:c)|q is s-convex on [a,b] for some fized s € (0,1] and g > 1, then

’f(a) : / f()do
) )

Ao pERT (3 o] )
< ba{[lf( )N+ /<a;b> T/q+ [ /<a;b) q+|f’(b)|qr/q},

Theorem 1.3 ([8, Theorem 2.2 and 2.4]). Let f : I C Ry — Ry be differentiable
on I° and g : [a,b] = Ry be continuous and symmetric with respect to ‘”b for
a,be I with a <b.
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(1) If |f'] is convex on [a,b], then

o ‘f )+ () / / o
2= @) + 17 0] / / , et

1+4+1¢ 1-1¢ 1—-t¢ 1+t
(1.7) L(t) = ;_a—l—Tb and U(t) = 5 a—i—%b.

(2) If |f'|? is convex on [a,b] for ¢ > 1, then

(1) ’f ) + £( )/ /f
ba{lf()l”lf |q]”q/ /U“ 2)dedt.

In recent years, some other kinds of Hermite-Hadamard type inequalities
were created in, for example, [1, 2, 3, 4, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25,
26, 27, 24, 28, 29|, especially the monographs [6, 15], and related references
therein.

In this paper, we will supply several properties of the above defined geo-
metric-arithmetically s-convex functions, find an identity for an integral whose
integrand is a product of a function and a derivative, and then establish some
integral inequalities of Hermite-Hadamard type for functions whose derivative
are of the geometric-arithmetic s-convexity.

I /\

where

2. Properties of geometric-arithmetically s-convex functions

It is clear that when s = 1 Definition 1.4 becomes Definition 1.3.
We now supply an example of geometric-arithmetically s-convex functions
as follows. Let s € (0,1] and f(z) = P for x € Ry and p > 0. Then

tf(@)+ A —=t)f(y) <t f(z) + (1 —1)"f(y), p>0
Fla'y'™") < { flta + (1 t)y) < tf(2) + (1= ) f(y), p>1
tf @)+ (1 =0)f(y) < ftz + (1= 1)y), 0<p<1
for all z,y € Ry and t € [0,1]. As a result,

(1) for all p > 0 and s € (0,1], the power function zP is geometric-
arithmetically s-convex on R.;
(2) for p > 1 the power function z? is geometric-arithmetically convex on
Ry;
(3) and for 0 < p <1 the power function zP is concave on R, .
It was proved in [18, Proposition 2.3] that, for s1, s2 € (0, 1] with s1 < s, if
a function f : [a,b] C Ry — Ry is sp-geometric-arithmetically convex, then it
is also sj-geometric-arithmetically convex on [a, b].
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We now demonstrate several properties of geometric-arithmetically s-convex
functions.

Theorem 2.1. Let f : I C Ry — R and s € (0,1]. Then the following
statements are true:

(1) The function f(x) is geometric-arithmetically s-convez on I if and only
if f(e*) is s-convex on the interval InI = {Inz | x € I}, where it is
assumed that In0 = —oo.

(2) If the function f(x) is geometric-arithmetically convex on I, then it is
geometric-arithmetically s-convex on I.

(3) If f(x) is decreasing and geometric-arithmetically s-convex on I, then
it 1s s-convex on I.

(4) If f(x) is increasing and s-convex on I, then it is also geometric-
arithmetically s-convex on I.

Proof. If a function f(x) is geometric-arithmetically s-convex on I, then we
have

f(et Inx+(1—t) lny) _ f(.’L'tyl_t)
St f()+ (1—1)°fly) =t°F (™) + (1 —1)° f (M),

so the function f(e*) is s-convex on the interval InI. Conversely, if f(e¥) is
s-convex on the interval In I, we have

f($ty17t) — f(et Inz+(1—t) lny)
SEf(ET) + (=0 f (M) = f(2) + (1= )°f(y),

which means that the function f(x) is geometric-arithmetically s-convex on I.
If a function f(z) is geometric-arithmetically convex on I, we have

f'y' ") <tf(e)+ (1 —t)f(y) <t°f(x) + (1 —1)°f(y),

so it is also geometric-arithmetically s-convex on I.
If f(x) is decreasing and geometric-arithmetically s-convex on I, we have

fltz+ (1 —t)y) < f(='y' ") <t°f (@) + (1= 1)° fy),

which means that it is s-convex on I.
If f(x) is increasing and s-convex on I, we have

F'y'h) < flta+ (1 —t)y) <t f(x) + (1 —1)°f(y),

accordingly, it is geometric-arithmetically s-convex on I. ([

3. An integral identity

For establishing new integral inequalities of Hermite-Hadamard type involv-
ing the geometric-arithmetically s-convex function, we need the following inte-
gral identities.
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Lemma 3.1. Let f : I C Ry — R be a differentiable mapping on I° and
a,b € I with b > a > 0. Further let h : [a,b] — Ry be differentiable. If
' € L([a, b)), then

(3.1)
b

h(b)£(b) — h(a) f(a) — / W () f (x) dx

a

1
_ W{/ Q01251012 ((140/2(1-0)/2) 1 ((140)/25(1-)/2) g
0

1
Jr/ a(1—t)/2b(1+t)/2h(a(1—t)/2b(1+t)/2)f/(a(1—t)/2b(1+t)/2)dt}_
0

Proof. Since

b Vab b
/h’(m)f(:z:)dx:/ h’(m)f(:z:)dx—i—/\/_b W (2)f(z) da.

Letting 2 = a(1*/2p(1=1)/2 for t € [0,1] results in

Vab
/ B (z)f(z)dz

— /1 £ (a0H0/250-0/2) q b (o(H0/2(1-0)/2)
0

= — h(a(1+t)/2b(1—t)/2)f(a(1+t)/2b(1—t)/2)‘

1
0
_ w /O ' Q7210 /2y (4(40/2(1-0/2) 1 (q(U+0/240-0/2) g
= h(Vab) f(Vab) = h(a)f(a)
_ w /O ' Q72 (102} (q(40/2(1-0/2) 1 (q(+0/240-0/2) 1.
Putting x = a1 =9/2p(1+1)/2 for ¢ € [0, 1] brings out

b
/ B (z)f(x)dz
Vab

= /1 f(a(l_t)/Qb(1+t)/2) dh(a(l_t)/Qb(l-i-t)/Q)
0

= h(a(l—t)/2b(1+t)/2)f(a(l—t)/2b(1+t)/2) |(1)

_ Inb ; Ina /1 a(l_t)/Qb(1+t)/2h(a(l—t)/2b(1+t)/2)f/ (a(l—t)/2b(1+t)/2) dt
0

= h(b)f(b) = h(Vab) f(Vab)

1
7W/ Q=072 (02 (=072 (140/2) 1 (q(1=0/24140/2) 1.
0
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Lemma 3.1 is thus proved. (I

4. Some integral inequalities of Hermite-Hadamard type

Now we are in a position to establish some new integral inequalities of
Hermite-Hadamard type involving the geometric-arithmetically s-convex func-
tion.

Theorem 4.1. Let f : I C Ry — R be a differentiable function on I° and
a,b €I withb > a > 0. Further let h : [a,b] = Rg be a differentiable function.
If f' € L([a,b]) and |f'|? is a geometric-arithmetically s-convex function on
[a,b] for s € (0,1] and g > 1, then

b nb—1Ina Ha
O 0) — g (o) — [ W) aa| < L[ L]

% {[GQ/[Z(qfl)]L(aq/[2(q*1)],bq/[2(q*1)])}1_1/q[(25+1 —D)|f' (@) +|f (b )ml/q
+ [p9/2a=DI L (qa/12(a= D] pa/12(a=D])] 1-1/q [1F/(a)] 7+ (257 = 1) /(b ]1/‘1}
where ||h]lco = sup,e(qp M) and L(u,v) is the logarithmic mean defined by

u—v y
— u#v
(4.1) L(u,v) ={ Inu—1Inv’ “u,v > 0.
u, u=v,

Proof. Using Lemma 3.1 and by Holder integral inequality, we obtain

b
‘M@ﬂwhWVw)/fﬂmﬂ@dz

a

< W{/ Q0121021 ((140/2(1-0/2) | 1 (q(+D/250-0/2) | d
0

N /1 a(l—t)/2b(1+t)/2h( (1— t)/zb(1+t /2)|f ( (1—¢) /2b(1+t /2)|dt}
0

< (hlbhla)HhHoo{/ (02 (1=0/2| p1 (g(1H0/25(1=0)/2) | 4
< 5 ;

1
+/ a(lt)/2b(1+t)/2‘f/(a(1t)/2b(1+t)/2)‘dt}
0

< (o= Il

1 Ja—1) 1-1/ap 1 1/q
« {[/ (a(0/250-0/2) /(@ dt} {/ ‘f/(a(lth)/Qb(lt)/2)‘th]
0 0
1 1-1/qp r1 1/q
+ [/ (a(lt)/2b(1+t)/2)q/(q1)dt] {/ ‘f’(a(lft)/Qb(”t)/Q)\q dt] }
0 0
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Since
1
/ (a(1+t>/2b(1—t>/2)q/<q—1> dt = 2/, (qo/2(a=1)] pa/[2(a=1)])
0
and
1
/ (a<17t>/2b<1+t>/2)q/<q*1> dt = b9/l (qo/2a=1)] pa/2(a=1)),
0
by the geometric-arithmetic s-convexity of |f’|2 on [a, b], we have
! q /1 +t\° 11—\’
[le@romeompas 1 e+ () o] a
0 0

2t = )[f'(a)|? + | (D)
25(s+1) '

Similarly, we have
/1‘f/(a(1—t)/2b(1+t)/2)‘th < |f'(a)]? + (257" — 1)|f/(b)|q.
0 25(s +1)
A combination of the above equalities and inequalities immediately gives The-
orem 4.1. O

Theorem 4.2. Let f : I C Ry — R be a differentiable mapping on I° and
a,be I withb>a >0, and let h: [a,b] — Rg be differentiable. If f' € L([a,b])
and |f'|? is a geometric-arithmetically s-convex function on [a,b] for s € (0,1]
and g > 1, then

b 1/q
Inb—Ina)l|h| e 1

x {[a?/12(a= DI L, (q/12a=D] pa/Rla=0) = gsatt )9 1)) 4| £ (0)]]
+ [bQ/[Q(qfl)]L(aq/[Q(qfl)] , bq/[Q(qfl)])} 1-1/q [|f/(a)| + (25q+1 _ 1)1/‘1|f’(b)” }

Proof. From Lemma 3.1 and by the geometric-arithmetically s-convexity of
|f']? on [a, b], we have

’M@ﬂ@—M@ﬂ@—L%ﬂMN@dx
< 1nb—1na{

M@ﬂmmwﬂ@/

a

/1 a(1+t)/2b(1—t)/2h(a(1+t)/2b(1—t)/2) \f’ (a(1+t)/2b(1—t)/2) ‘ dt

s B) .

N /1 a(l_t)/Qb(l-i-t)/Qh(a(l—t)/Qb(1+t)/2)’f/(a(l—t)/Qb(l-i-t)/Q)‘ dt}
0

1
< (1nb—1r;a)||h||oo{/ a(1+0/251=00/2) 1 (g (140)/2(1-0)/2) | 41

0

1
+/ a(l—t)/Qb(l-i-t)/Q}f/(a(l—t)/2b(1+t)/2)’dt}
0
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§<mblgaMhmn{/daun%uo/[(1+f)|f(

0
n (u) S|f’(b)|} dt + /01 a1=0/2p(1+0)/2 [(Tt)slf’(a)l
(5 o] ae}.

Using Holder integral inequality, we have

[ aesor T (LY o+ (1) o] a

1 1-1/q
< {/ (a(1+t)/2b(1t)/2)Q/(¢11)dt]
0

AL ] M [ (5] o)

[9/2a= D) [ ( g/ (a1 bq/[2<q—1>])}1—1/q{ 1 ]”q
=la a —_—
’ 254(sq + 1)

x [(29 = )Y £ @) + 1 O)])-

Similarly, we obtain

é at-ormore | (12 >|f(ﬂ <1+§|f<ﬂ

1/q
- 1
< [pt/[2(a=DI], (ga/[2(a=D)] pa/l2(a-D =Ml ____ 2
< (a : )] 2%4(sq + 1)

R 1
< [1f' @]+ (2 = 1) )l).
Combining the above equalities and inequalities results in Theorem 4.2. (I

Theorem 4.3. Let f : I C Ry — R be a differentiable mapping on I° and
a,b € I withb>a >0, and let h : [a,b] — Rq be differentiable. If ' € L([a,b])
and |f'|? is a geometric-arithmetically s-convex function on [a,b] for s € (0,1]
and q > 1, then

b
M@ﬂwfhwvww;/fmmﬂde

< (Inb — lna)|
- 21+s/q

(4.2)

|l oo {al/QL(a1/27b1/2) [25|f/(a)|q + |f/(b)|q}1/q
+b1/2L(a1/2,b1/2) [|f/(a)|q+28|f/(b)|q]1/q}-

Proof. By Lemma 3.1 and Holder integral inequality, we have

b
Mwﬂw—hmvm»;/fmwﬂmdx
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1
< Inb— lna{/ a(1+t)/2b(17t)/2h(a(1+t)/2b(1ft)/2)’f/(a(1+t)/2b(17t)/2)’dt
ST ;

1
+/ (1— t)/Qb(lth)/Qh( (1-)/2; 1+t)/2 \f (1=1)/2p(1+8) /2 ]dt}
0

~ (b —1na)[|h]o {/1 a(+0/2p(=072| 1 (1402511 /2) | 4
- 2 0

1
+/ a(lt)/2b(1+t)/2’f/(a(1t)/2b(1+t)/2)‘dt}
0

1-1
- (Inb —Ina)||hll { [/1 o (1+/2p(1=1)/2 dt] i
= 2 0

1 1/q
> [/ a(1+t)/2b(1—t)/2|f/(a(1+t)/2b(1—t)/2)|q dt]
0
1 1-1/q
+ [/ a(1=0/2p(1+1)/2 dt}
0

1 1/q
o [/ a(lt)/2b(1+t)/2’f/(a(1t)/2b(1+t)/2)‘th:| }
0

Since |f’|7 is a geometric-arithmetically s-convex function on [a,b] and 1% <1
and 15t < 1 for 0 <t <1, then

/ (0/25(1-0/2] 1 (q(+0/25(0-0/2)[1 g
< [ atomgocere[ (LY e (A51) ] ar
[ atsor i s (1) 1] ar
= (3) t@ L@ 0 ) 1 @ + 1761

Similarly, we also have

<

/1 (1— t)/Qb(lth /2|f( (1— t)/2b(1+t /2)|th
0

< (3) L@ e @i+ 21 o)

Substituting the last two inequalities into the first one reveals (4.2). Theo-
rem 4.3 is thus proved. O

Theorem 4.4. Let f : I C Ry — R be a differentiable mapping on I° and
a,be I withb>a >0, and let h : [a,b] — Rq be differentiable. If ' € L([a, b))
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and |f'|7 is a geometric-arithmetically 1-convex function on [a,b] for ¢ > 1,
then
b

(4.3) ‘h(b)f(b) ~haf@ - [ W@z

(b =)l

{ [a1/2L(a1/2, b1/2ﬂ 1-1/q

Ql/2
< (L@ @+ 1Ol

1 1/a
i [P L) — a1 @~ 0
+ [bl/QL(a1/27b1/2)}11/q<¥L(a1/27bl/?)[|f/(a)|q + |f/(b>|q]
o peL@ e e - @)
Inb—1Ina ’ ’

Proof. Using Lemma 3.1 and by Holder integral inequality, we obtain

B(b)1(b) — hia) f(a) — / W (@) f(z) dz
< Inb— 1na{

< 2 /1 a(1+t)/2b(17t)/2h(a(1+t)/2b(17t)/2)‘f’(a(1+t)/2b(17t)/2)‘dt

0
1
+/ a(lt)/2b(1+t)/2h(a(1t)/2b(1+t)/2)’f/(a(1t)/2b(1+t)/2)‘dt}
0

< (o= o)l

1
+/ a(l—t)/Qb(l-i-t)/Q‘f/(a(l—t)/2b(1+t)/2)’dt}
0

1-1
_ (b—Tna)|hfu { { / 1a<1+t>/2b<1t>/2dt} :
= 2 0

1
{/ a(1+t)/2b(1—t)/2’f/(a(1+t)/2b(1—t)/2)‘dt
0

1 1/q
% /a(1+t)/2b(1t)/2|f/(a(1+t)/2b(1t)/2)|th]
0

ropl 1-1/q
n / a(l—t)/2b(1+t)/2dt:|
LJo

1 1/q
o /a(l—t)/2b(1+t)/2’f/(a(l—t)/2b(1+t)/2)’th:| }
0

Since

1
/ a1+ /2p(1=0)/2 34 — al/QL(a1/27 b1/2),
0
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/1 1 (1HD/25(1-1)/2 34 — [al/QL(al/val/Q) —a
0 Inb—Ina

3

1
/ a1O/2H1H0/2 4 — B2 (g1, 1),

0
[b _ bl/QL(al/Q, bl/Q)}

Inb—Ina

—

/ 1a(1-D/2p(140/2 4

o

By the geometric-arithmetic 1-convexity of |f’|? on [a, b], we have

1
q(1+0)/2p(1- t/Q‘f q(1+0)/2p(1-1)/2 ‘th

S—

1

14+t 11—t
< a<1+t>/2b<1—t>/2( L paye + Tlf’(b)lq)dt

aPL(a, 02| f (@) + 11 (0]

+ w|~c\

1 127 (. 1/2 71/2 / /
- - L _ a_ q
[0 2L(a2,62) — ][ (@)~ | £ b))
and
1
/ a=0/2(40/2) (o (1=0/2(140)/2) 9 g4
0
1
< §b1/2L(b1/2,bl/Q)[lf’(a)lq +1f'(®)1]
L 127 1/2 31)2 NIRRT
e [ VL@ B G~ 17 @)
Combinatining the above equalities and inequalities leads to the inequality
(4.3). Theorem 4.4 is proved. O

Corollary 4.4.1. Under the conditions of Theorem 4.4, if ¢ =1, then

b
(44)  [R®)F ) — h(a)f(a) - / W (@) f(x) da

< (hlbh;a)|h|oo{%[(al/2+b1/2)L(a1/2,b1/2)(|f/(a)|+|f/(b)|)}

[(at0) — (a2 + B2 L (a2, /2] (| (b)] — If’(a)l)}-

Inb—1Ina
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